Sentiment Analisis Terhadap Cryptocurrency Berdasarkan Comment Dan Reply Pada Platform Twitter
Abstract
Analisis sentiment saat ini banyak di gunakan masyarat sebagai bahan untuk mengetahui pendapat atau opini masyarakat
tentang berbagai macam hal. Dengan menggunakan sentiment analisis kita dapat mengklasifikasikan data apakah data tersebut
termasuk opini netral opini positif opini negatif. Penelitian ini membahas tentang analisis sentiment untuk mengukur tingkat
akurasi dari pendapat masyarakat pada tiga cryptocurrency yaitu Bitcoin,ethereum,ripple dengan metode Naive Bayes dan
support vector machine yang berguna untuk mengetahui nilai akurasi yang tertinggi dari dua metode yang digunakan dalam
penelitian ini. Ada banyak metode yang bisa digunakan untuk mengkasifikasikan opini tersebut, namun penelitian ini dipilih
metode Naive Bayes dan Support vector machine, dengan alasan metede tersebut banyak di gunakan oleh peneliti lain dan
menghasilkan nilai akurasi yang tinggi. Hasil dari penelitian ini adalah berupa data perbandingan dari akurasi. hasil akurasi
dari 3 cryptocurrency SVM lebih besar dari pada nilai akurasi 3 cryptocurrency Naive Bayes.
Downloads
References
E. Dourado and J. Brito, “Cryptocurrency,” in The New Palgrave Dictionary of Economics, Palgrave Macmillan, Ed. London: Palgrave Macmillan UK, 2014, pp. 1–9. doi: 10.1057/978-1-349-95121-5_2895-1.
S. H. Othman, R. Z. R. Radzi, and D. Stiawan, “A Study of Bitcoin Stock Market Prediction: Methods, Techniques and Tools,” p. 5.
Y. Takhteyev, A. Gruzd, and B. Wellman, “Geography of Twitter networks,” Soc. Netw., vol. 34, no. 1, pp. 73–81, Jan. 2012, doi: 10.1016/j.socnet.2011.05.006.
E. Stenqvist and J. Lönnö, “Predicting Bitcoin price fluctuation with Twitter sentiment analysis,” p. 37.
B. Liu, “Sentiment Analysis and Opinion Mining,” p. 168.
E. Retnawiyati, “Analisis Sentimen Pada Data Twitter dengan Menggunakan Text Mining terhadap Suatu Produk,” p. 6.
T. R. Li, A. S. Chamrajnagar, X. R. Fong, N. R. Rizik, and F. Fu, “Sentiment-Based Prediction of Alternative Cryptocurrency Price Fluctuations Using Gradient Boosting Tree Model,” Front. Phys., vol. 7, p. 98, Jul. 2019, doi: 10.3389/fphy.2019.00098.
B. Liu, “Sentiment Analysis and Subjectivity,” p. 38.
M. Z. Nafan and A. E. Amalia, “Kecenderungan Tanggapan Masyarakat terhadap Ekonomi Indonesia berbasis Lexicon Based Sentiment Analysis,” J. MEDIA Inform. BUDIDARMA, vol. 3, no. 4, p. 268, Oct. 2019, doi: 10.30865/mib.v3i4.1283.
M. Rani and J. Arora, “Twitter Data Predicting Geolacation Using Data Mining Techniques,” vol. 4, no. 6, p. 8.
Download PDF: 3005 times
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)