Optimizing Motorcycle Sales: Enhancing Customer Segmentation with K-Means Clustering and Data Mining Techniques

  • Luis Fernando Universitas Multimedia Nusantara, Indonesia
  • Melissa Indah Fianty Universitas Multimedia Nusantara, Indonesia
Keywords: Clustering, CCustomer Segmentation, Data Mining, K-Means Algorithm

Abstract

Information plays a crucial role in the sustainability of company operations. The development of information technology, especially in the industry 4.0 era, affects various fields including economics, social, and education. The company faces challenges in declining motorcycle sales due to intense competition and ineffective customer segmentation. To address these issues, this study proposes the use of the K-Means algorithm with Python tools for better customer segmentation. The study aims to identify diverse customer groups and tailor marketing strategies accordingly. By utilizing the Elbow method and Silhouette score, the analysis of customer data is simplified. This study also employs data mining techniques to uncover hidden patterns in motorcycle sales data, aiding companies in improving operational efficiency and decision-making.

Downloads

Download data is not yet available.

References

P. E. Sudjiman and L. S. Sudjiman, “Analisis Sistem Informasi Manajemen Berbasis Komputer Dalam Proses Pengambilan Keputusan,” TeIKa, vol. 8, no. 2, 2020, doi: 10.36342/teika.v8i2.2327.

W. Wahyudi, “Rancang Bangun Deteksi Warna Berbasis Machine Learning Arduino Mega Pro Mini Atmega2560-16AU,” Micronic J. Multidiscip. Electr. Electron. Eng., 2023, doi: 10.61220/micronic.v1i1.20235.

S. Hasan and N. Muhammad, “Sistem Informasi Pembayaran Biaya Studi Berbasis Web Pada Politeknik Sains Dan Teknologi Wiratama Maluku Utara,” IJIS - Indones. J. Inf. Syst., vol. 5, no. 1, 2020, doi: 10.36549/ijis.v5i1.66.

W. Gede Endra Bratha, “Literature Review Komponen Sistem Informasi Manajemen: Software, Database Dan Brainware,” J. Ekon. Manaj. Sist. Inf., vol. 3, no. 3, 2022, doi: 10.31933/jemsi.v3i3.824.

Tarisno Amijoyo and A. K. Pasya, “Sistem Informasi Manajemen Seminar Pada Indonesia Gaming Arena,” J. Inform. Teknol. dan Sains, vol. 4, no. 4, 2022, doi: 10.51401/jinteks.v4i4.2041.

R. Siswanto, A. Susanto, and E. Saputra, “Sistem Informasi Helpdesk Ticketing di PT Tunas Artha Gardatama,” J. Ris. dan Apl. Mhs. Inform., vol. 1, no. 03, 2020, doi: 10.30998/jrami.v1i03.313.

V. Plotnikova, M. Dumas, and F. Milani, “Adaptations of data mining methodologies: A systematic literature review,” PeerJ Comput. Sci., vol. 6, 2020, doi: 10.7717/PEERJ-CS.267.

F. A. Setiawan, M. Sadikin, and E. R. Kaburuan, “Analisis Permasalahan Perangkat Pencetak Menggunakan Metode Algoritma K-Means dan K-Medoids,” Teknika, vol. 11, no. 2, 2022, doi: 10.34148/teknika.v11i2.471.

M. I. Fianty, M. E. Johan, A. Aulia, and M. M. Veronica, “Application of Clustering-Based Data Mining for the Assessment of Nutritional Status in Toddlers at Community Health Centers,” J. Inf. Syst. Informatics, vol. 5, no. 4, 2023, doi: 10.51519/journalisi.v5i4.586.

K. G. Al-Hashedi and P. Magalingam, "Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019," Comput. Sci. Rev., vol. 40, p. 100402, 2021.

C. Wu, B. Yan, R. Yu, B. Yu, X. Zhou, Y. Yu, and N. Chen, "k-Means Clustering Algorithm and Its Simulation Based on Distributed Computing Platform," Complexity, vol. 2021, no. 1, p. 9446653, 2021.

E. T. Naldy and A. Andri, "Penerapan Data Mining Untuk Analisis Daftar Pembelian Konsumen Dengan Menggunakan Algoritma Apriori Pada Transaksi Penjualan Toko Bangunan MDN," J. Nas. Ilmu Komput., vol. 2, no. 2, pp. 89-101, 2021.

R. D. Handayani and R. A. Aziz, “Framework Information Technology Infrastructure Library (Itil V3) : Audit Teknologi Informasi Sistem Informasi Akademik (Siakad) Perguruan Tinggi,” Explor. J. Sist. Inf. dan Telemat., vol. 11, no. 1, 2020, doi: 10.36448/jsit.v11i1.1456.

I. Pratiwi, “Pengaruh Dukungan Manajemen Puncak, Kecanggihan Teknologi Informasi, Kualitas Sistem Informasi Akuntansi Dan Kinerja Individual Terhadap Efektifitas Sistem Informasi Akuntansi (Studi Pada Hotel Berbintang Tiga dan Empat Di Provinsi Banten),” J. Ris. Akunt. Tirtayasa, vol. 4, no. 1, 2019, doi: 10.48181/jratirtayasa.v4i1.5476.

K. I. Jones and Swati Sah, “Application of Machine Learning With Big Data Analytics In The Insurance Industry,” Int. J. Data Informatics Intell. Comput., vol. 11, no. 12, 2022.

Reymar, “Top 9 Big Data Challenges (And How You Can Solve Them Easily),” SynchApps by Cazoomi. 2023.

A. I. Ramdhani, R. B. Agung, and W. Hermawan, “Rancang Bangun Aplikasi Persediaan Barang Pada Cv . Indoprima Motor Menggunakan Metode Fifo (First in First Out) Berbasis Web,” J. Gerbang STMIK Bani Saleh, vol. 13, no. 1, 2023.

R. Setiawan, “Menurunkan Claim Next Process Reject Plate R Cembung Pada Proses Perakitan Crankshaft Menggunakan Metode Eight Steps di PT XYZ,” Technologic, vol. 13, no. 2, 2022, doi: 10.52453/t.v13i2.417.

E. P. Yudha and R. A. Dina, “Pengembangan Potensi Wilayah Kawasan Perbatasan Negara Indonesia (Studi Kasus: Ranai-Natuna),” Tata Loka, vol. 22, no. 3, 2020.

N. Nurhani and F. I. Sari, “Pengaruh Pelayanan Terdepan Terhadap Kepuasan Konsumen Pada PT Astra Internasional Tbk - Motor Di Makassar,” Nobel Manag. Rev., vol. 3, no. 2, 2022, doi: 10.37476/nmar.v3i2.2931.

N. Nur’aeni and S. Supartono, “Pengaruh Kualitas Produk, Citra Merek, Dan Desain Produk Terhadap Keputusan Pembelian Sepeda Motor Honda Beat,” J. Dimens., vol. 11, no. 1, 2022, doi: 10.33373/dms.v11i1.3520.

Salsabila MR, “Teknik Analisis Data Pengertian Hingga Contoh Penggunaan,” DQLab. 2022.

B. P. Wongso, M. E. Johan, and M. I. Fianty, “Empowering Pregnancy Risk Assessment: A Web-Based Classification Framework with K-Means Clustering Enhanced Models,” J. Inf. Syst. Informatics, vol. 5, no. 4, 2023, doi: 10.51519/journalisi.v5i4.568.

D. M. Saputra, D. Saputra, and L. D. Oswari, “Effect of Distance Metrics in Determining K-Value in K-Means Clustering Using Elbow and Silhouette Method,” 2020. doi: 10.2991/aisr.k.200424.051.

I. F. Ashari, E. Dwi Nugroho, R. Baraku, I. Novri Yanda, and R. Liwardana, “Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta,” J. Appl. Informatics Comput., vol. 7, no. 1, 2023, doi: 10.30871/jaic.v7i1.4947.

M. Sholeh and K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, 2023, doi: 10.30998/string.v8i1.16388.

Published
2024-09-12
Abstract views: 123 times
Download PDF: 123 times
How to Cite
Fernando, L., & Fianty, M. (2024). Optimizing Motorcycle Sales: Enhancing Customer Segmentation with K-Means Clustering and Data Mining Techniques. Journal of Information Systems and Informatics, 6(3), 1484-1498. https://doi.org/10.51519/journalisi.v6i3.799

Most read articles by the same author(s)