A A Comprehensive Review of Energy Optimization Techniques in the Internet of Things

  • Bassey Isong North-West University, South Africa
  • Kedibone Moeti North-West University, South Africa
Keywords: IoT, WSNs, Energy efficiency techniques, AI-based optimization, Edge computing

Abstract

The advancement of energy efficiency in the Internet of Things (IoT) and wireless sensor networks (WSNs) is an important research effort, given their rapid application expansion across smart cities and homes, healthcare, agriculture, and industrial automation. This paper conducted a comprehensive survey of existing innovative solutions to challenges focusing on hardware-based, software-driven, and network optimization approaches, alongside artificial intelligence-driven and demand-side energy management, and security-enhanced frameworks. 82 peer-reviewed journal articles and conference papers published between 2021 and 2025 were reviewed, using sources such as IEEE Xplore, ScienceDirect, Web of Science, SpringerLink, and Google Scholar. It identifies significant developments in energy-efficient techniques, including ultra-low-power hardware, adaptive scheduling, bio-inspired clustering, and energy harvesting. Others include intelligent optimization methods(e.g. machine, quantum-inspired heuristics), and blockchain-enhanced security. A structured evaluation process is implemented, following PRISMA guidelines, categorizing studies, and synthesizing findings to highlight technological progress, challenges, and future research directions. The findings show a growing trend towards integrated, multi-objective routing and cross-layer energy optimizations, with significant progress in minimizing energy use, network lifetime and improving security mechanisms. However, challenges like scalability, computational overhead and real-world deployment issues persist. Our study offers valuable insights for sustainable energy management in IoT and WSNs and helps guide future development toward more resilient, adaptable and sustainable energy-aware systems.

Downloads

Download data is not yet available.

References

B. A. Begum and S. V. Nandury, “Data aggregation protocols for WSN and IoT applications – A comprehensive survey,” J. King Saud Univ. Comput. Inf. Sci., vol. 35, pp. 651–681, 2023.

S. Bharany et al., “Energy efficient fault tolerance techniques in green cloud computing: A systematic survey and taxonomy,” Sustain. Energy Technol. Assess., vol. 53, 2022, Art. no. 102613, doi: 10.1016/j.seta.2022.102613.

T. M. S. Kumar and Tran, “Low-power design techniques for Internet of Things (IoT) devices: Current trends and future directions,” Prog. Electron. Commun. Eng., vol. 1, no. 1, pp. 19–25, Jun. 2024, doi: 10.31838/ECE/01.01.04.

S. U. Khan et al., “Energy-efficient routing protocols for UWSNs: A comprehensive review of taxonomy, challenges, opportunities, future research directions, and machine learning perspectives,” J. King Saud Univ. Comput. Inf. Sci., vol. 36, no. 7, 2024, Art. no. 102128, doi: 10.1016/j.jksuci.2024.102128.

M. H. H. Widianto, A. Ramadhan, A. Trisetyarso, and E. Abdurachman, “Energy saving on IoT using LoRa: A systematic literature review,” Int. J. Reconfigurable Embedded Syst., vol. 11, no. 1, pp. 25–33, Mar. 2022, doi: 10.11591/ijres.v11.i1.pp25-33.

A. Rahimifar and Y. S. Kavian, “A review on energy efficiency in software-defined wireless sensor networks for IoT applications,” in Proc. 5th Nat. 1st Int. Conf. Appl. Res. Electr. Eng. (AREE), Ahvaz, Iran, 2025, pp. 1–6, doi: 10.1109/AREE63378.2025.10880302.

M. Poyyamozhi et al., “IoT—A promising solution to energy management in smart buildings: A systematic review, applications, barriers, and future scope,” Buildings, vol. 14, Art. no. 3446, 2024, doi: 10.3390/buildings14113446.

S. Barge and M. Gerardine, “Low power techniques for Internet of Things implementation: A review,” Multidiscip. Rev., vol. 7, no. 12, p. 306, 2024, doi: 10.31893/multirev.2024306.

T. V. Manohar and T. Dharini, “Energy efficiency in IoT: Challenges, techniques, and future directions,” Int. J. Innovative Res. Technol., vol. 11, no. 5, Oct. 2024.

G. Sanislav, D. Mois, S. Zeadally, and S. C. Folea, “Energy harvesting techniques for Internet of Things (IoT),” IEEE Access, vol. 9, pp. 39530–39549, 2021, doi: 10.1109/ACCESS.2021.3064066.

A. Banotra, S. Ghose, D. Mishra, and S. Modem, “Energy harvesting in self-sustainable IoT devices and applications based on cross-layer architecture design: A survey,” Comput. Netw., vol. 236, Art. no. 110011, 2023, doi: 10.1016/j.comnet.2023.110011.

A. Souri, A. Hussien, M. Hoseyninezhad, and M. Norouzi, “A systematic review of IoT communication strategies for an efficient smart environment,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, Art. no. e3736, 2019, doi: 10.1002/ett.3736.

C. Thiagarajan and P. Samundiswary, “A survey on energy efficient, harvesting and optimization approaches in IoT system,” in Proc. Int. Conf. Comput. Commun. Power Technol. (IC3P), Visakhapatnam, India, 2022, pp. 129–132, doi: 10.1109/IC3P52835.2022.00034.

Z. Almudayni, B. Soh, H. Samra, and A. Li, “Energy inefficiency in IoT networks: Causes, impact, and a strategic framework for sustainable optimization,” Electronics, vol. 14, no. 1, Art. no. 159, 2025, doi: 10.3390/electronics14010159.

E. S. Ali, R. A. Saeed, I. K. Eltahir, and O. O. Khalifa, “A systematic review on energy efficiency in the internet of underwater things (IoUT): Recent approaches and research gaps,” J. Netw. Comput. Appl., vol. 213, Art. no. 103594, 2023, doi: 10.1016/j.jnca.2023.103594.

M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, Art. no. n71, 2021, doi: 10.1136/bmj.n71.

Y. Liu, H. Qu, S. Chen, and X. Feng, “Energy efficient task scheduling for heterogeneous multicore processors in edge computing,” Sci. Rep., vol. 15, 2025, doi: 10.1038/s41598-025-92604-6.

L. K. Ketshabetswe, A. M. Zungeru, C. K. Lebekwe, and B. Mtengi, “Energy-efficient algorithms for lossless data compression schemes in wireless sensor networks,” Sci. Afr., vol. 23, Art. no. e02008, 2024, doi: 10.1016/j.sciaf.2023.e02008.

M. Bhatia, “Energy efficient IoT-based informative analysis for edge computing environment,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 9, Art. no. e4527, 2022, doi: 10.1002/ett.4527.

W. Hua, P. Liu, and L. Huang, “Energy-efficient resource allocation for heterogeneous edge–cloud computing,” IEEE Internet Things J., vol. 11, no. 2, pp. 2808–2818, Jan. 2024, doi: 10.1109/JIOT.2023.3293164.

H. Harb et al., “CLARA: A cluster-based node correlation for sampling rate adaptation and fault tolerance in sensor networks,” Internet Things, vol. 28, Art. no. 101345, 2024, doi: 10.1016/j.iot.2024.101345.

A. Aljohani, “Deep learning-based optimization of energy utilization in IoT-enabled smart cities: A pathway to sustainable development,” Energy Rep., vol. 12, pp. 2946–2957, 2024, doi: 10.1016/j.egyr.2024.08.075.

M. Raval, S. Bhardwaj, A. Aravelli, J. Dofe, and H. Gohel, “Smart energy optimization for massive IoT using artificial intelligence,” Internet Things, vol. 13, Art. no. 100354, 2021, doi: 10.1016/j.iot.2020.100354.

Y. Wang, Y. Li, J. Lei, and F. Shang, “Robust and energy-efficient RPL optimization algorithm with scalable deep reinforcement learning for IIoT,” Comput. Netw., vol. 255, Art. no. 110894, 2024, doi: 10.1016/j.comnet.2024.110894.

V. K. Mutombo, S. Lee, J. Lee, and J. Hong, “EER-RL: Energy-efficient routing based on reinforcement learning,” Mobile Inf. Syst., vol. 2021, Art. no. 5589145, 2021, doi: 10.1155/2021/5589145.

D. Godfrey, B. Suh, B. H. Lim, K.-C. Lee, and K.-I. Kim, “An energy-efficient routing protocol with reinforcement learning in software-defined wireless sensor networks,” Sensors, vol. 23, no. 8, Art. no. 8435, 2023, doi: 10.3390/s23208435.

N. Rashid, B. U. Demirel, and M. A. Al Faruque, “AHAR: Adaptive CNN for energy-efficient human activity recognition in low-power edge devices,” IEEE Internet Things J., vol. 9, no. 15, pp. 13041–13051, Aug. 2022, doi: 10.1109/JIOT.2022.3140465.

D. Balakrishnan and T. D. Rajkumar, “Enhanced Mayfly optimization with active elite approach based cluster head selection for energy efficient IoT-based healthcare monitoring system,” in Proc. 2nd Int. Conf. Smart Technol. Syst. Next Gener. Comput. (ICSTSN), Villupuram, India, 2023, pp. 1–6, doi: 10.1109/ICSTSN57873.2023.10151534.

K. B. R. Bhaskar, A. Prasanth, and P. Saranya, “An energy-efficient blockchain approach for secure communication in IoT-enabled electric vehicles,” Int. J. Commun. Syst., vol. 35, no. 11, Art. no. e5189, 2022, doi: 10.1002/dac.5189.

Y. Liu et al., “QEGWO: Energy-efficient clustering approach for industrial wireless sensor networks using quantum-related bioinspired optimization,” IEEE Internet Things J., vol. 9, no. 23, pp. 23691–23704, Dec. 2022, doi: 10.1109/JIOT.2022.3189807.

A. Ali et al., “Enhanced fuzzy logic zone stable election protocol for cluster head election (E-FLZSEPFCH) and multipath routing in wireless sensor networks,” Ain Shams Eng. J., vol. 15, no. 2, Art. no. 102356, 2024, doi: 10.1016/j.asej.2023.102356.

M. R. Reddy et al., “Energy-efficient cluster head selection in wireless sensor networks using an improved grey wolf optimization algorithm,” Computers, vol. 12, no. 2, Art. no. 35, 2023, doi: 10.3390/computers12020035.

D. Devassy, J. I. Johnraja, and G. J. L. Paulraj, “NBA: Novel bio-inspired algorithm for energy optimization in WSN for IoT applications,” J. Supercomput., vol. 78, pp. 16118–16135, 2022, doi: 10.1007/s11227-022-04593-3.

P. Tewari and S. Tripathi, “An energy-efficient routing scheme in Internet of Things enabled WSN: Neuro-fuzzy approach,” J. Supercomput., vol. 79, no. 8, pp. 11134–11158, 2023, doi: 10.1007/s11227-023-05091-9.

T. V. Vaiyapuri et al., “A novel hybrid optimization for cluster-based routing protocol in information centric wireless sensor networks for IoT based mobile edge computing,” Wireless Pers. Commun., vol. 127, pp. 39–62, 2022, doi: 10.1007/s11277-022-09415-3.

G. A. Senthil, A. Raaza, and N. Kumar, “Internet of Things energy efficient cluster-based routing using hybrid particle swarm optimization for wireless sensor network,” Wireless Pers. Commun., vol. 122, pp. 2603–2619, 2022, doi: 10.1007/s11277-021-09015-9.

V. Cherappa et al., “Energy-efficient clustering and routing using ASFO and a cross-layer-based expedient routing protocol for wireless sensor networks,” Sensors, vol. 23, no. 5, Art. no. 2788, 2023, doi: 10.3390/s23052788.

K. Lakshmanna et al., “Improved metaheuristic-driven energy-aware cluster-based routing scheme for IoT-assisted wireless sensor networks,” Sustainability, vol. 14, no. 13, Art. no. 7712, 2022, doi: 10.3390/su14137712.

M. Akbari, A. Syed, W. S. Kennedy, and M. Erol-Kantarci, “AoI-aware energy-efficient SFC in UAV-aided smart agriculture using asynchronous federated learning,” IEEE Open J. Commun. Soc., vol. 5, pp. 1222–1242, 2024, doi: 10.1109/OJCOMS.2024.3363132.

R. Ruby et al., “Energy-efficient multiprocessor-based computation and communication resource allocation in two-tier federated learning networks,” IEEE Internet Things J., vol. 10, no. 7, pp. 5689–5703, Apr. 2023, doi: 10.1109/JIOT.2022.3153996.

S. S. Khodaparast, X. Lu, P. Wang, and U. T. Nguyen, “Deep reinforcement learning based energy efficient multi-UAV data collection for IoT networks,” IEEE Open J. Veh. Technol., vol. 2, pp. 249–260, 2021.

R. Ramadan et al., “Intelligent home energy management using Internet of Things platform based on NILM technique,” Sustain. Energy Grids Netw., vol. 31, Art. no. 100785, 2022, doi: 10.1016/j.segan.2022.100785.

E. H. Hafshejani et al., “Self-aware data processing for power saving in resource-constrained IoT cyber-physical systems,” IEEE Sens. J., vol. 22, no. 4, pp. 3648–3659, Feb. 2022, doi: 10.1109/JSEN.2021.3133405.

K. A. Al-Sammak et al., “Optimizing IoT energy efficiency: Real-time adaptive algorithms for smart meters with LoRaWAN and NB-IoT,” Energies, vol. 18, no. 4, Art. no. 987, 2025, doi: 10.3390/en18040987.

W. Wei et al., “An intermittent OTA approach to update the DL weights on energy harvesting devices,” in Proc. Int. Symp. Quality Electron. Design (ISQED), Santa Clara, USA, 2022, pp. 1–6, doi: 10.1109/ISQED54688.2022.9806295.

D. T. Nguyen et al., “EEGT: Energy efficient grid-based routing protocol in wireless sensor networks for IoT applications,” Computers, vol. 12, no. 5, Art. no. 103, 2023, doi: 10.3390/computers12050103.

Q. Gang et al., “A Q-learning-based approach to design an energy-efficient MAC protocol for UWSNs through collision avoidance,” Electronics, vol. 13, no. 22, Art. no. 4388, 2024, doi: 10.3390/electronics13224388.

I. Venkatachalam et al., “Energy efficient group priority MAC protocol using hybrid Q-learning honey badger algorithm (QL-HBA) for IoT networks,” Sci. Rep., vol. 14, Art. no. 31453, 2024, doi: 10.1038/s41598-024-83234-5.

B. Sellami, A. Hakiri, and S. B. Yahia, “Deep reinforcement learning for energy-aware task offloading in joint SDN-blockchain 5G massive IoT edge network,” Future Gener. Comput. Syst., vol. 137, pp. 363–379, 2022, doi: 10.1016/j.future.2022.07.024.

S. K. Singh, Y. Pan, and J. H. Park, “Blockchain-enabled secure framework for energy-efficient smart parking in sustainable city environment,” Sustain. Cities Soc., vol. 76, Art. no. 103364, 2022, doi: 10.1016/j.scs.2021.103364.

A. F. E. Abadi et al., “RLBEEP: Reinforcement-learning-based energy efficient control and routing protocol for wireless sensor networks,” IEEE Access, vol. 10, pp. 44123–44135, 2022, doi: 10.1109/ACCESS.2022.3167058.

H. K. Yugank, R. Sharma, and S. H. Gupta, “An approach to analyse energy consumption of an IoT system,” Int. J. Inf. Technol., vol. 14, pp. 2549–2558, 2022, doi: 10.1007/s41870-022-00954-5.

A. Javadpour et al., “Enhancing energy efficiency in IoT networks through fuzzy clustering and optimization,” Mobile Netw. Appl., vol. 29, pp. 1594–1617, 2024, doi: 10.1007/s11036-023-02273-w.

J. C. dos Anjos et al., “An algorithm to minimize energy consumption and elapsed time for IoT workloads in a hybrid architecture,” Sensors, vol. 21, no. 9, Art. no. 2914, Apr. 2021, doi: 10.3390/s21092914.

J. A. Ansere et al., “Dynamic resource optimization for energy-efficient 6G-IoT ecosystems,” Sensors, vol. 23, no. 10, Art. no. 4711, 2023, doi: 10.3390/s23104711.

A. Ciuffoletti, “Deep-sleep for stateful IoT edge devices,” Information, vol. 13, no. 3, Art. no. 156, 2022, doi: 10.3390/info13030156.

M. Baniata, H. T. Reda, N. Chilamkurti, and A. Abuadbba, “Energy-efficient hybrid routing protocol for IoT communication systems in 5G and beyond,” Sensors, vol. 21, no. 2, Art. no. 537, 2021, doi: 10.3390/s21020537.

D. Hemanand et al., “Optimizing energy-efficient communication protocols for IoT devices in smart cities using narrowband IoT and LTE-M technology,” J. Electr. Syst., vol. 20, no. 5s, pp. 2149–2157, 2024, doi: 10.52783/jes.2560.

R. Somula, Y. Cho, and B. K. Mohanta, “SWARAM: Osprey optimization algorithm-based energy-efficient cluster head selection for wireless sensor network-based Internet of Things,” Sensors, vol. 24, no. 2, Art. no. 521, 2024, doi: 10.3390/s24020521.

C. V. Shilpa et al., “Energy-efficient routing optimization for IoT-based multilevel heterogeneous wireless sensor networks using firefly algorithm and hybrid clustering,” in Proc. Int. Conf. Electron. Renew. Syst. (ICEARS), Tuticorin, India, 2025, pp. 692–699, doi: 10.1109/ICEARS64219.2025.10940473.

H. M. Al-Kadhim and H. S. Al-Raweshidy, “Energy efficient data compression in cloud-based IoT,” IEEE Sens. J., vol. 21, no. 10, pp. 12212–12219, May 2021, doi: 10.1109/JSEN.2021.3064611.

I. Memon et al., “Energy-efficient fuzzy management system for Internet of Things connected vehicular ad hoc networks,” Electronics, vol. 10, no. 9, Art. no. 1068, 2021, doi: 10.3390/electronics10091068.

A. M. K. Abdulzahra, A. K. M. Al-Qurabat, and S. A. Abdulzahra, “Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods,” Internet Things, vol. 22, Art. no. 100765, 2023, doi: 10.1016/j.iot.2023.100765.

M. Merah, Z. Aliouat, and C. Kara-Mohamed, “An energy efficient self organizing map based clustering protocol for IoT networks,” in Proc. IEEE Int. Conf. Sci. Electron. Technol. Inf. Telecommun. (SETIT), Hammamet, Tunisia, 2022, pp. 197–203, doi: 10.1109/SETIT54465.2022.9875799.

M. Y. Arafat, S. Pan, and E. Bak, “Distributed energy-efficient clustering and routing for wearable IoT enabled wireless body area networks,” IEEE Access, vol. 11, pp. 1–13, 2023, doi: 10.1109/ACCESS.2023.3236403.

Z. Liu et al., “Energy-efficient guiding-network-based routing for underwater wireless sensor networks,” IEEE Internet Things J., vol. 9, no. 21, pp. 21702–21711, Nov. 2022, doi: 10.1109/JIOT.2022.3183128.

Y.-D. Yao et al., “Energy-efficient routing protocol based on multi-threshold segmentation in wireless sensors networks for precision agriculture,” IEEE Sens. J., vol. 22, no. 7, pp. 6216–6231, Apr. 2022, doi: 10.1109/JSEN.2022.3150770.

A. A. Mohamed, A. Diabat, and L. Abualigah, “Optimizing energy-efficient data replication for IoT applications in fog computing,” Int. J. Commun. Syst., vol. 37, no. 14, Art. no. e5864, 2024, doi: 10.1002/dac.5864.

R. Dogra et al., “Energy-efficient routing protocol for next-generation application in the Internet of Things and wireless sensor networks,” Wireless Commun. Mobile Comput., vol. 2022, Art. no. 8006751, 2022, doi: 10.1155/2022/8006751.

[70] F. Mir and F. Meziane, “DCOPA: A distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications,” Cluster Comput., vol. 26, pp. 1077–1098, 2023, doi: 10.1007/s10586-022-03741-w.

A. Malik and R. Kushwah, “Energy-efficient scheduling in IoT using Wi-Fi and ZigBee cross-technology,” J. Supercomput., vol. 79, pp. 10977–11006, 2023, doi: 10.1007/s11227-023-05093-7.

S. Algarni and F. E. A. El-Samie, “Energy-efficient distributed edge computing to assist dense Internet of Things,” Future Internet, vol. 17, no. 1, Art. no. 37, 2025, doi: 10.3390/fi17010037.

P. Periasamy et al., “ERAM-EE: Efficient resource allocation and management strategies with energy efficiency under fog–Internet of Things environments,” Connection Sci., vol. 36, no. 1, 2024, doi: 10.1080/09540091.2024.2350755.

W. Feng et al., “Energy-efficient collaborative offloading in NOMA-enabled fog computing for Internet of Things,” IEEE Internet Things J., vol. 9, no. 15, pp. 13794–13807, Aug. 2022, doi: 10.1109/JIOT.2022.3144571.

X. Liu et al., “Fair energy-efficient resource optimization for multi-UAV enabled Internet of Things,” IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3962–3972, Mar. 2023, doi: 10.1109/TVT.2022.3219613.

H. Wu, J. Chen, T. N. Nguyen, and H. Tang, “Lyapunov-guided delay-aware energy efficient offloading in IIoT-MEC systems,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 2117–2128, Feb. 2023, doi: 10.1109/TII.2022.3206787.

A. Razaque et al., “Energy-efficient and secure mobile fog-based cloud for the Internet of Things,” Future Gener. Comput. Syst., vol. 127, pp. 1–13, 2022, doi: 10.1016/j.future.2021.08.024.

A. Salim et al., “SEEDGT: Secure and energy efficient data gathering technique for IoT applications based WSNs,” J. Netw. Comput. Appl., vol. 202, Art. no. 103353, 2022, doi: 10.1016/j.jnca.2022.103353.

M. S. Philip and P. Singh, “An energy efficient algorithm for sustainable monitoring of water quality in smart cities,” Sustain. Comput. Informat. Syst., vol. 35, Art. no. 100768, 2022, doi: 10.1016/j.suscom.2022.100768.

K. S. Sankaran and B.-H. Kim, “Deep learning-based energy efficient optimal RMC-CNN model for secured data transmission and anomaly detection in industrial IoT,” Sustain. Energy Technol. Assess., vol. 56, Art. no. 102983, 2023, doi: 10.1016/j.seta.2022.102983.

R. Nagaraju et al., “Secure routing-based energy optimization for IoT application with heterogeneous wireless sensor networks,” Energies, vol. 15, no. 13, Art. no. 4777, 2022, doi: 10.3390/en15134777.

A. Sharma et al., “MHSEER: A meta-heuristic secure and energy-efficient routing protocol for wireless sensor network-based industrial IoT,” Energies, vol. 16, no. 10, Art. no. 4198, 2023, doi: 10.3390/en16104198.

S. Asaithambi et al., “An energy-efficient and blockchain-integrated software defined network for the industrial Internet of Things,” Sensors, vol. 22, no. 20, Art. no. 7917, 2022, doi: 10.3390/s22207917.

B. Swathi et al., “Energy-efficient and fault-tolerant routing mechanism for WSN using optimizer based deep learning model,” Sustain. Comput. Informat. Syst., vol. 44, Art. no. 101044, 2024, doi: 10.1016/j.suscom.2024.101044.

S. Ali et al., “IoT-based framework for optimizing energy efficiency and reliability in acoustic sensor networks using mobile sinks,” Sci. Rep., vol. 14, Art. no. 24122, 2024, doi: 10.1038/s41598-024-74664-2.

R. Yarinezhad and S. Azizi, “An energy-efficient routing protocol for the Internet of Things networks based on geographical location and link quality,” Comput. Netw., vol. 193, Art. no. 108116, 2021, doi: 10.1016/j.comnet.2021.108116.

S. Azizi et al., “Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach,” J. Netw. Comput. Appl., vol. 201, Art. no. 103333, 2022, doi: 10.1016/j.jnca.2022.103333.

A. Hazra et al., “Fog computing for energy-efficient data offloading of IoT applications in industrial sensor networks,” IEEE Sens. J., vol. 22, no. 9, pp. 8663–8671, May 2022, doi: 10.1109/JSEN.2022.3157863.

B. Hnatiuc et al., “Power management for supply of IoT systems,” in Proc. Int. Conf. Circuits, Syst., Commun. Comput. (CSCC), Crete, Greece, 2022, pp. 216–221, doi: 10.1109/CSCC55931.2022.00044.

Z. Wang et al., “An energy-efficient all-dynamic multiparameter sensor for battery-less smart nodes in agricultural Internet-of-Things,” IEEE Sens. J., vol. 24, no. 13, pp. 21426–21435, Jul. 2024, doi: 10.1109/JSEN.2024.3396842.

S. Shukla et al., “Energy harvesting-assisted ultra-low-power processing-in-memory accelerator for ML applications,” in Proc. Great Lakes Symp. VLSI (GLSVLSI), 2024, pp. 633–638, doi: 10.1145/3649476.3660392.

A. S. H. Abdul-Qawy et al., “An enhanced energy efficient protocol for large-scale IoT-based heterogeneous WSNs,” Sci. Afr., vol. 21, Art. no. e01807, 2023, doi: 10.1016/j.sciaf.2023.e01807.

A. Gouissem et al., “A secure energy efficient scheme for cooperative IoT networks,” IEEE Trans. Commun., vol. 70, no. 6, pp. 3962–3976, Jun. 2022, doi: 10.1109/TCOMM.2022.3165887.

S. Islam et al., “Energy-adaptive checkpoint-free intermittent inference for low power energy harvesting systems,” ArXiv, 2025.

Y.-m. Kang and Y.-s. Lim, “Handling power depletion in energy harvesting IoT devices,” Electronics, vol. 13, no. 14, Art. no. 2704, 2024, doi: 10.3390/electronics13142704.

Y. Cao et al., “Energy efficiency optimization for SWIPT-enabled IoT network with energy cooperation,” Sensors, vol. 22, no. 13, Art. no. 5035, 2022, doi: 10.3390/s22135035.

R. Bharathi et al., “Predictive model techniques with energy efficiency for IoT-based data transmission in wireless sensor networks,” J. Sensors, vol. 2022, Art. no. 3434646, 2022, doi: 10.1155/2022/3434646.

M. E. H. F. Mahdi et al., “Towards self-powered WSN: The design of ultra-low-power wireless sensor transmission unit based on indoor solar energy harvester,” Electronics, vol. 11, no. 13, Art. no. 2077, 2022, doi: 10.3390/electronics11132077.

Published
2025-06-30
Abstract views: 126 times
Download PDF: 23 times
How to Cite
Isong, B., & Moeti, K. (2025). A A Comprehensive Review of Energy Optimization Techniques in the Internet of Things. Journal of Information Systems and Informatics, 7(2), 1476-1531. https://doi.org/10.51519/journalisi.v7i2.1110
Section
Articles