Implementation of a Telegram-Based Child Consultation Chatbot Using IndoBERT

  • Gusti Ayu Wahyu Whurapsari Udayana University, Indonesia
  • I Made Agus Dwi Suarjaya Udayana University, Indonesia https://orcid.org/0000-0003-0512-2966
  • Wayan Oger Vihikan Udayana University, Indonesia
Keywords: Child Consultation, Chatbot, IndoBERT, Intent Classification

Abstract

Children’s health and development are crucial aspects that require proper attention from parents. However, many parents lack easy access to immediate consultation regarding their child's health and well-being. To address this issue, this study develops a child consultation chatbot on Telegram using the IndoBERT model. The chatbot utilizes data from Halodoc and Alodokter, structured into an intent-based format with 227 tags, 5,428 patterns, and 278 responses. The dataset undergoes preprocessing, including lowercasing, text cleaning, normalization, stopword removal, and stemming. Four preprocessing scenarios are tested, including the use of term frequency-based stopwords without applying stemming, the use of NLTK stopwords without stemming, the use of term frequency-based stopwords combined with stemming, and the use of NLTK stopwords combined with stemming. The best model, trained with an 80:20 training-validation split using term frequency-based stopwords without stemming, achieves 98% accuracy, 98.5% F1-score, 98.9% precision, and 98.5% recall. The chatbot successfully classifies user intent and ensures structured interactions through a confidence-based response mechanism. This research demonstrates that an IndoBERT-based chatbot can effectively assist parents in obtaining quick and relevant information regarding their children's health and development.

Downloads

Download data is not yet available.

References

R. K. Sari, S. P. Astuti, M. Sari, and R. N. Syari’ati, Profil Kesehatan Ibu dan Anak 2022. Jakarta: Badan Pusat Statistik, Jakarta - Indonesia, 2022.

Guy Allison et al., “Next Generation Indonesia,” British Council, vol. 1, no. 1, p. 63, 2022.

Soenarto, Y., Trisnantoro, L., and Fuad, A., "Penyebaran Spesialis Anak di Indonesia Tahun 2004: Implikasinya Terhadap Kebijakan Kesehatan dan Pendidikan," Sari Pediatri, vol. 8, no. 2, pp. 94–99, 2016.

G. Achmad Marzuki and A. Setyawan, “Peran Orang Tua Dalam Pendidikan Anak,” JPBB : Jurnal Pendidikan, vol. 1, no. 4, 2022.

R. A. Sekarwati, A. Sururi, R. Rakhmat, M. Arifin, and A. Wibowo, “Survei Metode Pengujian Chatbot pada Media Sosial untuk Mengukur Tingkat Akurasi,” Sisfotenika, vol. 11, no. 2, p. 172, 2021.

N. Shahin and L. Ismail, “From Rule-Based Models to Deep Learning Transform-ers Architectures for Natural Language Processing and Sign Language Translation Systems: Survey, Taxonomy and Performance Evaluation,” 2024. doi: 10.1007/s10462-024-10895-z.

D. Griol, Z. Callejas, J. M. Molina, and A. Sanchis, “Adaptive dialogue management using intent clustering and fuzzy rules,” Expert Syst, vol. 38, no. 1, 2020.

Ahmet Birim and Mustafa Erden, “Robustness to Spelling Errors for Intent Detection,” 2022 30th Signal Processing and Communications Applications Conference (SIU), Aug. 2022.

A. Dwiyono, M. Fachrurrozi, J. Palembang-Prabumulih, K. Ogan Ilir, and S. Selatan, “Analisis Perbandingan Klasifikasi Intent Chatbot Menggunakan Deep Learning BERT, RoBERTa, dan IndoBERT,” Journal of Information System Research, vol. 6, no. 1, pp. 605–616, 2024, doi: 10.47065/josh.v6i1.6051.

P. Sayarizki and H. Nurrahmi, “Implementation of IndoBERT for Sentiment Analysis of Indonesian Presidential Candidates,” Journal on Computing, vol. 9, no. 2, pp. 61–72, 2024, doi: 10.34818/indojc.2024.9.2.934.

A. Agung, A. Daniswara, I. Kadek, and D. Nuryana, “Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru,” Journal of Informatics and Computer Science, vol. 05, pp. 97–100, 2023.

H. Hendiana, A. Irma Purnamasari, and I. Ali, “Analisis Sentimen Komentar Berita Detik.Com Menggunakan Algoritma Suport Vektor Machine (Svm),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 3175–3181, 2024, doi: 10.36040/jati.v8i3.8421.

P. A. Setiawati, I. M. A. D. Suarjaya, and I. N. P. Trisna, “Sentiment Analysis of Unemployment in Indonesia During and Post COVID-19 on X (Twitter) Using Naïve Bayes and Support Vector Machine,” Journal of Information Systems and Informatics, vol. 6, no. 2, pp. 662–675, 2024, doi: 10.51519/journalisi.v6i2.713.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” Jurnal Media Informatika Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.

J. Pardede and D. Darmawan, “Perbandingan Algoritma Stemming Porter , Sastrawi , Idris, dan Arifin & Setiono Pada Dokumen Teks Bahasa Indonesia,” vol. 12, no. 1, 2025, doi: 10.25126/jtiik.2025128860.

N. Rajkumar, T. S. Subashini, K. Rajan, and V. Ramalingam, “Tamil Stopword Removal Based on Term Frequency,” Advances in Intelligent Systems and Computing, p. 21, 2020.

Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li, X., Lim, Z. Y., Soleman, S., et al., "IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding," arXiv preprint arXiv:2009.05387, 2020.

Budi Juarto and Yulianto, “Indonesian News Classification Using IndoBert,” 2023. [Online]. Available: www.ijisae.org

D. Abimanto and I. Mahendro, “Penggunaan Aplikasi Telegram Untuk Kegiatan Pembelajaran Jarak Jauh pada Mata Kuliah Bahasa Inggris Materi Speaking pada Mahasiswa Universitas Maritim AMNI Semarang,” Prosiding Kemaritiman, pp. 245–256, 2021.

R. P. Yuwan, R. Soelistijadi, and E. Zuliarso, “Implementasi Chatbot Telegram untuk Meningkatkan Kualitas Layanan Jaringan Internet Pada Layanan ICONNET Menggunakan Penerapan Metode Action Research (AR),” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, pp. 40–48, 2024, doi: 10.35870/jtik.v8i1.1431.

Ni Putu Utari Dyani Laksmi, Oka Sudana, and Agung Cahyawan, “Innovative Learning Model for Dharmagita Based on Telegram Chatbot,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 13, no. 2, pp. 248–257, 2024, doi: 10.23887/janapati.v13i2.78535.

Published
2025-06-24
Abstract views: 131 times
Download PDF: 76 times
How to Cite
Whurapsari, G. A., Suarjaya, I. M. A. D., & Vihikan, W. (2025). Implementation of a Telegram-Based Child Consultation Chatbot Using IndoBERT. Journal of Information Systems and Informatics, 7(2), 1184-1204. https://doi.org/10.51519/journalisi.v7i2.1079
Section
Articles