Sentiment Analysis of X (Twitter) Comments on The Influence of South Korean Culture in Indonesia

  • Putu Rheya Ananda Savitri Udayana University, Indonesia
  • I Made Agus Dwi Suarjaya Udayana University, Indonesia
  • Wayan Oger Vihikan Udayana University, Indonesia
Keywords: Korean wave, Convolutional Neural Network, X (Twitter), Sentiment

Abstract

Hallyu or Korean wave refers to the phenomenon of South Korean values and culture spreading to other countries, ultimately influencing global culture. South Korean culture, such as K-pop music, dramas, films, fashion, food, and lifestyle, has gained popularity in Indonesia since 2002. Because South Korean culture influences many aspects of life in Indonesia, responses to this Korean wave are widely discussed in social media, especially through X (Twitter) ranging from positive sentiment to negative sentiment. To gain a more in-depth and detailed understanding of public opinion, a classification process was conducted on the social media platform X (Twitter) using a deep learning algorithm based on the CNN method. The results of this classification provide more accurate and informative insight into the attitudes, opinions, and reactions of the Indonesian people towards the influence of South Korean culture in this country. The research was conducted using 717,998 tweet data resulting in an accuracy of 79%.

Downloads

Download data is not yet available.

References

C. M. Annur, “Pengguna Twitter di Indonesia Capai 24 Juta hingga Awal 2023, Peringkat Berapa di Dunia?,” databoks.katadata.co.id, 2023.

S. R. Jannah, Z. Khoirunnisa, and A. R. Faristiana, “Pengaruh Korean Wave Dalam Fashion Style Pada Remaja Di Indonesia,” Ekon. Bisnis dan Manaj., vol. 1, no. 3, pp. 11–20, 2023, doi: 10.59024/jipa.v1i3.219

I. P. Putri, F. D. P. Liany, and R. Nuraeni, “K-Drama dan Penyebaran Korean Wave di Indonesia,” ProTVF, vol. 3, no. 1, p. 68, 2019, doi: 10.24198/ptvf.v3i1.20940.

L. A. Putri, U. Islam, N. Sultan, S. Kasim, and A. Info, “Dampak Korea Wave Terhadap Prilaku Remaja,” E-Journal uin, Univ. Islam Negeri Sultan Syarif Kasim Riau., vol. 3, no. 1, pp. 42–48, 2020.

D. J. M. Pasaribu, K. Kusrini, and S. Sudarmawan, “Peningkatan Akurasi Klasifikasi Sentimen Ulasan Makanan Amazon dengan Bidirectional LSTM dan Bert Embedding,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, pp. 9–20, 2020, doi: 10.35585/inspir.v10i1.2568.

P. L. Parameswari and Prihandoko, “Penggunaan Convolutional Neural Network Untuk Analisis Sentimen Opini Lingkungan Hidup Kota Depok Di Twitter,” J. Ilm. Teknol. dan Rekayasa, vol. 27, no. 1, pp. 29–42, 2022, doi: 10.35760/tr.2022.v27i1.4671.

A. Srivastava, V. Singh, and G. S. Drall, “Sentiment Analysis of Twitter Data,” Int. J. Healthc. Inf. Syst. Informatics, vol. 14, no. 2, pp. 1–16, 2019, doi: 10.4018/ijhisi.2019040101.

Ni Made Tara Okta Adriana, I Made Agus Dwi Suarjaya, and Dwi Putra Githa, “Analisis Sentimen Publik Terhadap Aksi Demonstrasi di Indonesia Menggunakan Support Vector Machine Dan Random Forest,” Decod. J. Pendidik. Teknol. Inf., vol. 3, no. 2, pp. 257–267, 2023, doi: 10.51454/decode.v3i2.187.

A. R. Isnain, N. S. Marga, and D. Alita, “Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 1, p. 55, 2021, doi: 10.22146/ijccs.60718.

F. M. J. M. Shamrat et al., “Sentiment analysis on twitter tweets about COVID-19 vaccines using NLP and supervised KNN classification algorithm,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 1, pp. 463–470, 2021, doi: 10.11591/ijeecs.v23.i1.pp463-470.

I. G. and Y. B. and A. Courville, Deep Learning. 2016. [Online]. Available: https://www.deeplearningbook.org/

Y. Yuliska, D. H. Qudsi, J. H. Lubis, K. U. Syaliman, and N. F. Najwa, “Analisis Sentimen pada Data Saran Mahasiswa Terhadap Kinerja Departemen di Perguruan Tinggi Menggunakan Convolutional Neural Network,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 5, p. 1067, 2021, doi: 10.25126/jtiik.2021854842.

A. K. Jadon and S. Kumar, “Emotion detection using Word2Vec and convolution neural networks,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 3, pp. 1812–1819, 2024, doi: 10.11591/ijeecs.v33.i3.pp1812-1819.

T. Shoryu, L. Wang, and R. Ma, “A Deep Neural Network Approach using Convolutional Network and Long Short Term Memory for Text Sentimen Classification,” IEEE Access, pp. 763–768, 2021.

T. S. Sajana, S. Jacob, P. Vinod, V. G. Menon, and P. S. Shilpa, “Context-aware gender and age recognition from smartphone sensors,” Proc. Int. Conf. Comput. Commun. Secur. Intell. Syst. IC3SIS 2022, no. September, 2022, doi: 10.1109/IC3SIS54991.2022.9885610.

H. Wang, “Word2Vec and SVM Fusion for Advanced Sentiment Analysis on Amazon Reviews,” Highlights Sci. Eng. Technol., vol. 85, pp. 743–749, 2024, doi: 10.54097/sw4pft19.

H. Juwiantho et al., “Sentiment Analysis Twitter Bahasa Indonesia Berbasis Word2vec Menggunakan Deep Convolutional Neural Network,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 1, pp. 181–188, 2020, doi: 10.25126/jtiik.202071758.

F. A. Irawan and D. A. Rochmah, “Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19,” J. Inform., vol. 9, no. 2, pp. 148–158, 2022, doi: 10.31294/inf.v9i2.13257.

Vidya Chandradev, I Made Agus Dwi Suarjaya, and I Putu Agung Bayupati, “Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT,” J. Buana Inform., vol. 14, no. 02, pp. 107–116, 2023, doi: 10.24002/jbi.v14i02.7244.

Published
2024-06-13
Abstract views: 680 times
Download PDF: 448 times
How to Cite
Savitri, P. R., Suarjaya, I. M. A., & Vihikan, W. (2024). Sentiment Analysis of X (Twitter) Comments on The Influence of South Korean Culture in Indonesia. Journal of Information Systems and Informatics, 6(2), 979-991. https://doi.org/10.51519/journalisi.v6i2.749