Analysis of Community Sentiment Towards Free Nutrition Meal Programs on Twitter Using Naïve Bayes, Support Vector Machine, K-Nearest Neighbors, and Ensemble Methods
Abstract
Meal program free nutritious food that was planned government reap diverse response from society, especially on social media like Twitter. Research This aiming for analyze sentiment public to the program with utilize text mining and machine learning techniques. Data of 1500 tweets was collected through the scraping process using Python. The sentiment in the tweets is classified into three categories: positive, negative, and neutral. In this study, four classification algorithms were used: Naïve Bayes, Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and ensemble, to compare their performance in sentiment analysis. Additionally, a text weighting method, TF-IDF, was tested to examine its impact on classification accuracy. The analysis results show that the Support Vector Machine (SVM) algorithm, when combined with the TF-IDF weighting method, provides the highest accuracy of 95.05%. Other algorithms also showed varied performance, with Ensemble achieving 86.57%, K-Nearest Neighbors 77.03%, and Naïve Bayes 60.42% accuracy. It is expected from results study This can give description general to perception public about the meal program free nutritious an
Downloads
References
K. Tamimi and P. T. Prasetyaningrum, “SPK Rekomendasi Makanan Bernutrisi Bagi Pednerita Gizi Buruk Metode EDAS,” J. Inf. Syst. Artif. Intell., vol. 2, no. 1, pp. 22–30, 2021, doi: 10.26486/jisai.v2i1.49.
A. Sitanggang, Y. Umaidah, Y. Umaidah, R. I. Adam, and R. I. Adam, “Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4902.
A. Putriyekti, D. Sulistiawati, N. Khairani, and R. R. Atmaja, “Analisis Multidimensional Sentimen Masyarakat Terhadap Program Makan Bergizi Gratis Pada Media Sosial X,” vol. 2, no. 1, pp. 1004–1024, 2025.
M. Rizqi, A. Rustiawan, and P. T. Prasetyaningrum, “Analisis Sentimen Terhadap Klinik Natasha Skincare di Yogyakarta Dengan Metode Google Review,” J. Inf. Technol. Ampera, vol. 5, no. 1, pp. 2774–2121, 2024, doi: 10.51519/journalita.v5i1.556.
A. Sentimen, T. Program, M. Bergizi, and G. Menggunakan, “MACHINE LEARNING PADA SOSIAL MEDIA X,” 2025.
H. M. Setiawan, “Penerapan metode lexicon based dan algoritma naïve bayes classifier pada analisis sentimen tapera berbasis Twitter,” B.Sc. thesis, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah Jakarta, Indonesia, 2025.
[2] Y. Z. Vebrian, “A sentiment analysis of free meal plans on social media using naïve Bayes algorithms,” INOVTEK Polbeng - Seri Informatika, vol. 10, no. 1, pp. 355–366, 2025.
H. J. Christanto and Y. A. Singgalen, “Sentiment Analysis of Customer Feedback Reviews Towards Hotel’s Products and Services in Labuan Bajo,” J. Inf. Syst. Informatics, vol. 4, no. 4, pp. 805–822, 2022, doi: 10.51519/journalisi.v4i4.294.
M. Oktafani and P. T. Prasetyaningrum, “Implementasi Support Vector Machine Untuk Analisis Sentimen Komentar Aplikasi Tanda Tangan Digital,” J. Sist. Inf. dan Bisnis Cerdas, vol. 15, no. 1, 2022, doi: 10.33005/sibc.v15i1.2697.
A. Munna and E. Zuliarso, “Interpretasi model Stacking Ensemble untuk analisis sentimen ulasan aplikasi pinjaman online menggunakan LIME,” vol. 21, no. 2, pp. 183–196, 2024.
A. Ramadhani, I. Permana, M. Afdal, and M. Fronita, “Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo-Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine,” Technol. Sci., vol. 6, no. 3, 2024, doi: 10.47065/bits.v6i3.6188.
S. Larissa, Z. Lewoema, and P. T. Prasetyaningrum, “Implementasi Data Mining Pada Klasifikasi Status Gizi Bayi Dengan Metode Decision Tree CHAID ( Studi Kasus : Puskesmas Godean 1 Yogyakarta ),” vol. 5, no. 1, pp. 61–74, 2024, doi: 10.51519/journalita.v5i1.538.
Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.
P. T. Prasetyaningrum, P. Purwanto, and A. F. Rochim, “Consumer Behavior Analysis in Gamified Mobile Banking : Clustering and Classifier Evaluation,” vol. 15, no. 2, pp. 290–308, 2025, doi: 10.33168/JSMS.2025.0218.
N. Knn, “Analisa Sentimen Pada Media Sosial ‘ X ’ Pencarian Keyword ChatGPT Menggunakan Algoritma K-Nearest Abstrak,” vol. 5, no. 3, pp. 3291–3305, 2024.
P. Taqwa Prasetyaningrun, I. Pratama, and A. Yakobus Chandra, “Implementation Of Machine Learning To Determine The Best Employees Using Random Forest Method,” Ijconsist Journals, vol. 2, no. 02, pp. 53–59, 2021, doi: 10.33005/ijconsist.v2i02.43.
S. Sudarto and K. Kusrini, “Klasifikasi tsunami gempa bumi dengan teknik stacking ensemble machine learning,” J. Informatika Polinema, vol. 10, no. 4, pp. 511–520, 2024.
P. T. Prasetyaningrum, P. Purwanto, and A. F. Rochim, “Enhancing Element Game Classification: Effective Techniques for Handling Imbalanced Classes,” Int. J. Intell. Eng. Syst., vol. 17, no. 1, pp. 555–571, 2024, doi: 10.22266/ijies2024.0229.47.
P. T. Prasetyaningrum, N. T. Kadir, A. Y. Chandra, and I. Pratama, “Comparison of support vector machine radial base and linear kernel functions for mobile banking customer satisfaction analysis,” IJCONSIST J., vol. 4, no. 1, pp. 10–16, 2022.
M. A. Anwar, H. Mulyo, and T. Tamrin, “Optimalisasi algoritma naive Bayes dengan teknik ensemble dalam analisis sentimen Twitter Pantai Kartini Jepara,” J. Minfo Polgan, vol. 13, no. 2, pp. 1331–1341, 2024.
N. Afifah, D. Permana, D. Vionanda, and D. Fitria, “Sentiment analysis of electric cars using naive Bayes classifier method,” UNP J. Stat. Data Sci., vol. 1, no. 4, pp. 289–296, 2023, doi: 10.37373/infotech.v5i2.1465.
D. A. Culp, “Benign prostatic hyperplasia. Early recognition and management.,” Urol. Clin. North Am., vol. 2, no. 1, pp. 29–48, 1975.
R. Peranginangin, E. J. G. Harianja, I. K. Jaya, and B. Rumahorbo, “Penerapan Algoritma Safe-Level-Smote Untuk Peningkatan Nilai G-Mean Dalam Klasifikasi Data Tidak Seimbang,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 67–72, 2020, doi: 10.46880/jmika.vol4no1.pp67-72.
R. Suppa, “Comparative Performance Evaluation Results of Classification Algorithm in Data Mining to Identify Types of Glass Based on Refractive Index and It’s Elements,” PENA Tek. J. Ilm. Ilmu-Ilmu Tek., vol. 8, no. 1, p. 20, 2023, doi: 10.51557/pt_jiit.v8i1.1705.


Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)