Development of a Student Depression Prediction Model Based on Machine Learning with Algorithm Performance Evaluation
Abstract
This research explores the implementation of machine learning to predict depression among university students using a dataset of 2.028 responses containing PHQ-9 scores and academic-demographic attributes. The research implements a structured modeling process involving feature selection, normalization, the model’s efficacy was gauged through a suite of evaluate measures, encompassing accuracy, precision, recall, F1-score, The support vector machine (SVM) model’s accuracy improved from 58.8% to 99.5% after hyperparameter tuning. This investigation lends itself to the advancement of a proactive identification framework, which hold potential for incorporation within collegiate mental well-being surveillance infrastructures. Future implementations may consider real-time models and expand data sources through digital counseling systems and behavioral analytics
Downloads
References
E. S. Gisela, E. A. Kinkie, A. Sabbilla, and U. Subroto, “Pengaruh Stres Akademik terhadap Kesejahteraan Psikologis Mahasiswa Semester Akhir yang Terlambat Lulus,” Jurnal Mahasiswa Humanis, vol. 5, no. 1, Jan. 2025, doi: 10.47065/josh.v6i1.5930.
E. Junilia and A. K. Dharmawan, "Menelusuri Jejak Depresi di Kalangan Mahasiswa: Sebuah Eksplorasi Gejala Khas," MagnaSalus: Jurnal Keunggulan Kesehatan, vol. 6, no. 3, 2024.
D. Muriyatmoko, Dihin, A. Musthafa, and M. Fa-Idzaa, "Perbandingan Metode Support Vector Machine dan Random Forest dalam Menganalisis Pengaruh Musik Terhadap Penurunan Tingkat Stress Mahasiswi Semester 7 saat Skripsi (Studi Kasus: Universitas Darussalam Gontor)," in Prosiding Seminar Nasional Amikom Surakarta, vol. 2, pp. 128-135, 2024.
M. Naufal, D. W. Utomo, and R. P. Tresyani, "Early Detection of Mental Health Disorders based on Sentiment using Stacking Method," Sistemasi: Jurnal Sistem Informasi, vol. 14, no. 1, pp. 271-280, 2025.
S. Juwariyah, A. Hulvi, N. Riduan, and K. Kusrini, “Mengukur Faktor Demografi Psikologis: Memprediksi Depresi, Kecemasan, dan Stres dengan menggunakan Machine Learning,” Komputika : Jurnal Sistem Komputer, vol. 13, no. 2, pp. 149–156, Sep. 2024, doi: 10.34010/komputika.v13i2.11793.
J. Homepage et al., “Research in the Mathematical and Natural Sciences Klasifikasi Tingkat Depresi Mahasiswa Menggunakan Image Recognition dengan Support Vector Machine,” Res. Math. Nat. Sci, vol. 4, no. 1, pp. 30–36, 2025, doi: 10.55657/rmns.v4i1.193.
P. T. Prasetyaningrum, P. Purwanto, and A. F. Rochim, “Consumer Behavior Analysis in Gamified Mobile Banking: Clustering and Classifier Evaluation,” Online) Journal of System and Management Sciences, vol. 15, no. 2, pp. 290–308, 2025, doi: 10.33168/JSMS.2025.0218.
M. R. Sudrajat and M. Zakariyah, “Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, Dec. 2024, doi: 10.47065/bits.v6i3.6180.
H. Syahputra, S. I. Naibaho, M. A. Maulana, I. Zulfahmi, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” BINA INSANI ICT JOURNAL, vol. 10, no. 1, pp. 52–61, 2023, doi: https://doi.org/10.51211/biict.v10i1.2304.
H. Syahputra, S. I. Naibaho, M. A. Maulana, I. Zulfahmi, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” BINA INSANI ICT JOURNAL, vol. 10, no. 1, pp. 52–61, 2023, doi: https://doi.org/10.51211/biict.v10i1.2304.
A. U. Haspriyanti and P. T. Prasetyaningrum, "Penerapan Data Mining Untuk Prediksi Layanan Produk Indihome Menggunakan Metode K-Nearst Neighbor," Journal of Information System and Artificial Intelligence, vol. 1, no. 2, pp. 100-107, 2021.
I. Setiawan, I. F. Yasin, and Y. T. Desianti, "Komparasi Kinerja Algoritma Random Forest, Decision Tree, Naïve Bayes, dan KNN dalam Prediksi Tingkat Depresi Mahasiswa menggunakan Student Depression Dataset," Jurnal Ilmu Komputer dan Teknologi, vol. 6, no. 1, pp. 47-58, 2025.
R. Fahlapi, H. Hermanto, A. Y. Kuntoro, L. Effendi, R. O. Nitra, and S. Nurlela, “Prediction of Employee Attendance Factors Using C4.5 Algorithm, Random Tree, Random Forest,” Semesta Teknika, vol. 23, no. 1, 2020, doi: 10.18196/st.231254.
P. T. Prasetyaningrum, P. Purwanto, and A. F. Rochim, “Enhancing Element Game Classification: Effective Techniques for Handling Imbalanced Classes,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 1, pp. 555–571, 2024, doi: 10.22266/ijies2024.0229.47.
M. Fadhilla, R. Wandri, A. Hanafiah, P. R. Setiawan, Y. Arta, and S. Daulay, “Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa,” Journal of Informatics Management and Information Technology, vol. 5, no. 1, pp. 40–47, Jan. 2025, doi: 10.47065/jimat.v5i1.473.
W. Wahyuningsih and P. T. Prasetyaningrum, “Enhancing Sales Determination for Coffee Shop Packages through Associated Data Mining: Leveraging the FP-Growth Algorithm,” Journal of Information Systems and Informatics, vol. 5, no. 2, pp. 758–770, May 2023, doi: 10.51519/journalisi.v5i2.500.
U. E. Chigbu, S. O. Atiku, and C. C. Du Plessis, “The Science of Literature Reviews: Searching, Identifying, Selecting, and Synthesising,” Publications, vol. 11, no. 1, Mar. 2023, doi: 10.3390/publications11010002.
P. J. Yu, “A Machine Learning Method for Detecting Depression Among College Students,” Int J Comput Appl, vol. 185, no. 24, pp. 44–51, Jul. 2023, doi: 10.5120/ijca2023923003.
A. E. Karrar, “The Effect of Using Data Pre-Processing by Imputations in Handling Missing Values,” Indonesian Journal of Electrical Engineering and Informatics, vol. 10, no. 2, pp. 375–384, Jun. 2022, doi: 10.52549/ijeei.v10i2.3730.
A. Chatterjee et al., “Statistical Analysis of Online Public Survey Lifestyle Datasets: A Machine Learning and Semantic Approach,” Nov. 28, 2023. doi: 10.21203/rs.3.rs-2864069/v1.
I. Komang Dharmendra, I. Made, A. W. Putra, and Y. P. Atmojo, “Evaluasi Efektivitas SMOTE dan Random Under Sampling pada Klasifikasi Emosi Tweet,” Informatics for Educators and Professionals : Journal of Informatics, vol. 9, no. 2, pp. 192–193, 2024.
I. Muraina, "Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts," in 7th International Mardin Artuklu Scientific Research Conference, pp. 496-504, 2022.
D. Martin Ward Powers, “Evaluation: From Precision, Recall And F-Measure To Roc, Informedness, Markedness & Correlation,” Article in Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011, doi: 10.9735/2229-3981.
M. R. R. Saelan and A. Subekti, “K-Best Selection Untuk Meningkatkan Kinerja Artificial Neural Network Dalam Memprediksi Range Harga Ponsel,” INTI Nusa Mandiri, vol. 19, no. 1, pp. 10–16, Jul. 2024, doi: 10.33480/inti.v19i1.5554.
A. Supoyo and P. T. Prasetyaningrum, "Analisis Data Mining Untuk Memprediksi Lama Perawatan Pasien Covid-19 Di DIY," Bianglala Inform, vol. 10, no. 1, pp. 21-29, 2022.
A. Fauzi, N. Maulidah, R. Supriyadi, H. Nalatissifa, and S. Diantika, "Prediksi Harga Properti Di Indonesia Menggunakan Algoritma Random Forest," RIGGS: Journal of Artificial Intelligence and Digital Business, vol. 4, no. 1, pp. 43-49, 2025, doi: 10.31004/riggs.v4i1.367.
H. Eldo, A. Ayuliana, D. Suryadi, G. Chrisnawati, and L. Judijanto, “Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan pada Transaksi Online,” Jurnal Minfo Polgan, vol. 13, no. 2, pp. 1627–1632, Oct. 2024, doi: 10.33395/jmp.v13i2.14186.
F. R. U. Hasanah and M. Yollanda, "Penerapan Model Regresi Logistik Terhadap Indeks Pembangunan Manusia (IPM) di Provinsi Sumatera Barat Tahun 2019–2021," JOSTECH Journal of Science and Technology, vol. 2, no. 2, pp. 199-208, 2022.
J. Zeniarja, A. Salam, and F. A. Ma’ruf, “Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa,” Jurnal Rekayasa Elektrika, vol. 18, no. 2, Jul. 2022, doi: 10.17529/jre.v18i2.24047.
N. T. Ujianto, Gunawan, H. Fadillah, A. P. Fanti, A. D. Saputra, and I. G. Ramadhan, “Penerapan algoritma K-Nearest Neighbors (KNN) untuk klasifikasi citra medis,” IT-Explore: Jurnal Penerapan Teknologi Informasi dan Komunikasi, vol. 4, no. 1, pp. 33–43, Feb. 2025, doi: 10.24246/itexplore.v4i1.2025.pp33-43.


Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)