Clustering Library Loan Books Using K-Means Clustering
Abstract
Optimal library collection management requires an understanding of book borrowing patterns to align availability with user needs. Without proper analysis, less popular books may remain in large quantities, while popular books may experience shortages. This study employs the K-Means Clustering method to group borrowed books at the Saintek UINSU Medan Library. The dataset consists of 290 loan records with attributes including book type, borrowing frequency, and the number of individuals borrowing each book. The data was converted into a numerical format and normalized using Min-Max Scaler. The Elbow Method was applied to determine the optimal number of clusters, which was found to be two. This study aims to classify books based on borrowing patterns to provide insights into library collection management. The clustering results can assist in decision-making regarding book procurement and distribution. Cluster C0 consists of popular books with high borrowing frequency and a large number of borrowers, while Cluster C1 includes books with lower borrowing rates. These findings offer a deeper understanding of borrowing trends, aiding libraries in developing acquisition strategies and organizing collections more effectively to meet user needs. These findings provide valuable insights for strategic decision-making in library collection development and maintenance, ensuring that popular books are adequately stocked while minimizing the accumulation of less-demanded titles.
Downloads
References
A. Febriyanto, S. Achmadi, and A. P. Sasmito, “Penerapan Metode K-Means Untuk Clustering Pengunjung Perpustakaan Itn Malang,” J. Mhs. Tek. Inform., vol. 5, no. 1, pp. 61–70, 2021.
D. Siburian, S. Retno Andani, I. Purnama Sari, and G. Artikel, “Implementasi Algoritma K-Means untuk Pengelompokkan Peminjaman Buku Pada Perpustakaan Sekolah Implementation of K-Means Algorithm for Clustering Books Borrowing in School Libraries,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 2, pp. 2828–9099, 2022, doi: 10.55123/jomlai.v1i2.725.
A. Anggi Riyanto, D. Daryanto, and G. Abdurrahman, “Text Mining Untuk Clustering Buku Di Perpustakaan Menggunakan Metode K-Means,” Natl. Multidiscip. Sci., vol. 1, no. 6, pp. 835–845, 2022, doi: 10.32528/nms.v1i6.239.
I. A. Nur Afifah and H. Nurdiyanto, “Data Mining Clustering Dalam Pengelompokan Buku Perpustakaan Mengunakan Algoritma K-Means,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 802–814, 2023, doi: 10.29100/jipi.v8i3.3891.
H. Ani, D. Nofriansyah, and I. Mariami, “Implementasi Data Mining Untuk Pengelempokan Buku Di Perpustakaan Yayasan Nurul Islam Indonesia Baru Dengan Metode K-Means Clustering,” J. CyberTech, vol. 1, no. 1, pp. 1–12, 2021, doi: 10.53513/jct.v1i1.315
Yulia and M. Silalahi, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Indones. J. Comput. Sci., vol. 10, no. 1, 2021, doi: 10.33022/ijcs.v10i1.3008.
I. Padiku and A. Lahinta, “Penerapan Clustering K-Means Untuk Mendukung Pengelolaan Koleksi Pada Perpustakaan Fakultas Teknik Universitas Negeri Gorontalo,” J. Tek., vol. 20, no. 1, pp. 54–62, 2022, doi: 10.37031/jt.v20i1.206.
N. N. Hasanah and A. S. Purnomo, “Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus : Perpustakaan Politeknik LPP Yogyakarta),” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 300–311, 2022, doi: 10.47233/jteksis.v4i2.499.
R. D. Syahputra et al., “Metode Penelitian Kuantitatif, Kualitatif, dan R&D,” Pers. Ed., vol. 4, no. 1, p. 601, 2019.
M. Waruwu, “Metode Penelitian dan Pengembangan (R&D): Konsep, Jenis, Tahapan dan Kelebihan,” J. Ilm. Profesi Pendidik., vol. 9, no. 2, pp. 1220–1230, 2024, doi: 10.29303/jipp.v9i2.2141.
N. R. Muntiari and K. H. Hanif, “Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritma Machine Learning,” J. Ilmu Komput. dan Teknol., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.35960/ikomti.v3i1.766.
M. Ula, A. Zulfikri, A. F. Ulva, and R. A. Rizal, “Penerapan Machine Learning Clustering K-Means dan Linear Regression Dalam Penentuan Tingkat Resiko Tuberkulosis Paru,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 336–348, 2023, doi: 10.33022/ijcs.v12i1.3162.
A. Fathurohman, “Machine Learning Untuk Pendidikan: Mengapa Dan Bagaimana,” J. Inform. dan Teknol. Komput., vol. 1, no. 3, pp. 57–62, 2021, doi: 10.55606/jitek.v1i3.306
S. Gustin, W. Ramdhan, and W. M. Kifti, “Teknik Data Mining Menggunakan Metode K-Means Untuk Mengcluster Dan Pencarian Buku Di Perpustakaan Daerah Kabupaten Asahan,” JUTSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, no. 3, pp. 195–204, 2022, doi: 10.33330/jutsi.v2i3.1901.
I. W. Antasari and A. Noegroho, “Pengembangan Koleksi Berbasis Akreditasi Prodi Di Perpustakaan Iain Purwokerto,” Publ. Libr. Inf. Sci., vol. 3, no. 1, p. 12, 2019, doi: 10.24269/pls.v3i1.1666.
M. D. N. H. Muhammad Dhio Nathama Harahap, M. A. Muhamad Alda, A. M. Abdul Malid, Y. F. H. Yardina Fauziah Harahap, F. Faradilla, and F. R. Fitri Rahmayani, “Efektivitas Pembuatan Sistem Informasi Manajemen Perpustakaan SMPN 1 Pantai Labu Berbasis Digital oleh KKN 110 UINSU,” Reslaj Relig. Educ. Soc. Laa Roiba J., vol. 6, no. 4, pp. 1555–1562, 2024, doi: 10.47467/reslaj.v6i4.765.
Adawiyah Ritonga and Yahfizham Yahfizham, “Studi Literatur Perbandingan Bahasa Pemrograman C++ dan Bahasa Pemrograman Python pada Algoritma Pemrograman,” J. Tek. Inform. dan Teknol. Inf., vol. 3, no. 3, pp. 56–63, 2023, doi: 10.55606/jutiti.v3i3.2863.
D. A. A. Prakash, “Pre-processing techniques for preparing clean and high-quality data for diabetes prediction,” Int. J. Res. Publ. Rev., vol. 5, no. 2, pp. 458–465, 2024, doi: 10.55248/gengpi.5.0224.0412.
M. Berg, “Predictive Maintenance of Power Grids: Clustering Analysis with KMeans and Hierarchical Methods,” 2024.
G. Chao, Y. Jiang, and D. Chu, “Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding,” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 10, pp. 11221–11229, 2024, doi: 10.1609/aaai.v38i10.29000.
P. Hou, L. Zhou, and Y. Yang, “Density clustering method based on k-nearest neighbor propagation,” J. Phys. Conf. Ser., vol. 2858, no. 1, 2024, doi: 10.1088/1742-6596/2858/1/012041.
M. Zubair, M. A. Iqbal, A. Shil, M. J. M. Chowdhury, M. A. Moni, and I. H. Sarker, “An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling,” Ann. Data Sci., vol. 11, no. 5, pp. 1525–1544, 2022, doi: 10.1007/s40745-022-00428-2.
M. Al Amin and D. Juniati, “Math Unesa,” J. Ilm. Mat., vol. 9, no. 2, pp. 437–446, 2021, doi: 10.59934/jaiea.v4i1.696
A. I. Ramadhan, P. D. Atika, and K. F. Ramdhania, “Analisis Clustering K-Means untuk Pemetaan Tingkat Pengangguran Terbuka di Provinsi-Provinsi Indonesia Tahun 2013-2023,” vol. 5, no. 2, pp. 109–122, 2025.
K. Sugahara and K. Okamoto, “Hierarchical matrix factorization for interpretable collaborative filtering,” Pattern Recognit. Lett., vol. 180, pp. 99–106, 2024, doi: 10.1016/j.patrec.2024.03.003.


Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)