Clustering Library Loan Books Using K-Means Clustering

  • Mawar Indah Tanjung State Islamic University of North Sumatra, Indonesia
  • Sriani Sriani State Islamic University of North Sumatra, Indonesia
Keywords: Clustering, Library, Machine Learning, K-Means Clustering

Abstract

Optimal library collection management requires an understanding of book borrowing patterns to align availability with user needs. Without proper analysis, less popular books may remain in large quantities, while popular books may experience shortages. This study employs the K-Means Clustering method to group borrowed books at the Saintek UINSU Medan Library. The dataset consists of 290 loan records with attributes including book type, borrowing frequency, and the number of individuals borrowing each book. The data was converted into a numerical format and normalized using Min-Max Scaler. The Elbow Method was applied to determine the optimal number of clusters, which was found to be two. This study aims to classify books based on borrowing patterns to provide insights into library collection management. The clustering results can assist in decision-making regarding book procurement and distribution. Cluster C0 consists of popular books with high borrowing frequency and a large number of borrowers, while Cluster C1 includes books with lower borrowing rates. These findings offer a deeper understanding of borrowing trends, aiding libraries in developing acquisition strategies and organizing collections more effectively to meet user needs. These findings provide valuable insights for strategic decision-making in library collection development and maintenance, ensuring that popular books are adequately stocked while minimizing the accumulation of less-demanded titles.

Downloads

Download data is not yet available.

References

A. Febriyanto, S. Achmadi, and A. P. Sasmito, “Penerapan Metode K-Means Untuk Clustering Pengunjung Perpustakaan Itn Malang,” J. Mhs. Tek. Inform., vol. 5, no. 1, pp. 61–70, 2021.

D. Siburian, S. Retno Andani, I. Purnama Sari, and G. Artikel, “Implementasi Algoritma K-Means untuk Pengelompokkan Peminjaman Buku Pada Perpustakaan Sekolah Implementation of K-Means Algorithm for Clustering Books Borrowing in School Libraries,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 2, pp. 2828–9099, 2022, doi: 10.55123/jomlai.v1i2.725.

A. Anggi Riyanto, D. Daryanto, and G. Abdurrahman, “Text Mining Untuk Clustering Buku Di Perpustakaan Menggunakan Metode K-Means,” Natl. Multidiscip. Sci., vol. 1, no. 6, pp. 835–845, 2022, doi: 10.32528/nms.v1i6.239.

I. A. Nur Afifah and H. Nurdiyanto, “Data Mining Clustering Dalam Pengelompokan Buku Perpustakaan Mengunakan Algoritma K-Means,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 802–814, 2023, doi: 10.29100/jipi.v8i3.3891.

H. Ani, D. Nofriansyah, and I. Mariami, “Implementasi Data Mining Untuk Pengelempokan Buku Di Perpustakaan Yayasan Nurul Islam Indonesia Baru Dengan Metode K-Means Clustering,” J. CyberTech, vol. 1, no. 1, pp. 1–12, 2021, doi: 10.53513/jct.v1i1.315

Yulia and M. Silalahi, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Indones. J. Comput. Sci., vol. 10, no. 1, 2021, doi: 10.33022/ijcs.v10i1.3008.

I. Padiku and A. Lahinta, “Penerapan Clustering K-Means Untuk Mendukung Pengelolaan Koleksi Pada Perpustakaan Fakultas Teknik Universitas Negeri Gorontalo,” J. Tek., vol. 20, no. 1, pp. 54–62, 2022, doi: 10.37031/jt.v20i1.206.

N. N. Hasanah and A. S. Purnomo, “Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus : Perpustakaan Politeknik LPP Yogyakarta),” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 300–311, 2022, doi: 10.47233/jteksis.v4i2.499.

R. D. Syahputra et al., “Metode Penelitian Kuantitatif, Kualitatif, dan R&D,” Pers. Ed., vol. 4, no. 1, p. 601, 2019.

M. Waruwu, “Metode Penelitian dan Pengembangan (R&D): Konsep, Jenis, Tahapan dan Kelebihan,” J. Ilm. Profesi Pendidik., vol. 9, no. 2, pp. 1220–1230, 2024, doi: 10.29303/jipp.v9i2.2141.

N. R. Muntiari and K. H. Hanif, “Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritma Machine Learning,” J. Ilmu Komput. dan Teknol., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.35960/ikomti.v3i1.766.

M. Ula, A. Zulfikri, A. F. Ulva, and R. A. Rizal, “Penerapan Machine Learning Clustering K-Means dan Linear Regression Dalam Penentuan Tingkat Resiko Tuberkulosis Paru,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 336–348, 2023, doi: 10.33022/ijcs.v12i1.3162.

A. Fathurohman, “Machine Learning Untuk Pendidikan: Mengapa Dan Bagaimana,” J. Inform. dan Teknol. Komput., vol. 1, no. 3, pp. 57–62, 2021, doi: 10.55606/jitek.v1i3.306

S. Gustin, W. Ramdhan, and W. M. Kifti, “Teknik Data Mining Menggunakan Metode K-Means Untuk Mengcluster Dan Pencarian Buku Di Perpustakaan Daerah Kabupaten Asahan,” JUTSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, no. 3, pp. 195–204, 2022, doi: 10.33330/jutsi.v2i3.1901.

I. W. Antasari and A. Noegroho, “Pengembangan Koleksi Berbasis Akreditasi Prodi Di Perpustakaan Iain Purwokerto,” Publ. Libr. Inf. Sci., vol. 3, no. 1, p. 12, 2019, doi: 10.24269/pls.v3i1.1666.

M. D. N. H. Muhammad Dhio Nathama Harahap, M. A. Muhamad Alda, A. M. Abdul Malid, Y. F. H. Yardina Fauziah Harahap, F. Faradilla, and F. R. Fitri Rahmayani, “Efektivitas Pembuatan Sistem Informasi Manajemen Perpustakaan SMPN 1 Pantai Labu Berbasis Digital oleh KKN 110 UINSU,” Reslaj Relig. Educ. Soc. Laa Roiba J., vol. 6, no. 4, pp. 1555–1562, 2024, doi: 10.47467/reslaj.v6i4.765.

Adawiyah Ritonga and Yahfizham Yahfizham, “Studi Literatur Perbandingan Bahasa Pemrograman C++ dan Bahasa Pemrograman Python pada Algoritma Pemrograman,” J. Tek. Inform. dan Teknol. Inf., vol. 3, no. 3, pp. 56–63, 2023, doi: 10.55606/jutiti.v3i3.2863.

D. A. A. Prakash, “Pre-processing techniques for preparing clean and high-quality data for diabetes prediction,” Int. J. Res. Publ. Rev., vol. 5, no. 2, pp. 458–465, 2024, doi: 10.55248/gengpi.5.0224.0412.

M. Berg, “Predictive Maintenance of Power Grids: Clustering Analysis with KMeans and Hierarchical Methods,” 2024.

G. Chao, Y. Jiang, and D. Chu, “Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding,” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 10, pp. 11221–11229, 2024, doi: 10.1609/aaai.v38i10.29000.

P. Hou, L. Zhou, and Y. Yang, “Density clustering method based on k-nearest neighbor propagation,” J. Phys. Conf. Ser., vol. 2858, no. 1, 2024, doi: 10.1088/1742-6596/2858/1/012041.

M. Zubair, M. A. Iqbal, A. Shil, M. J. M. Chowdhury, M. A. Moni, and I. H. Sarker, “An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling,” Ann. Data Sci., vol. 11, no. 5, pp. 1525–1544, 2022, doi: 10.1007/s40745-022-00428-2.

M. Al Amin and D. Juniati, “Math Unesa,” J. Ilm. Mat., vol. 9, no. 2, pp. 437–446, 2021, doi: 10.59934/jaiea.v4i1.696

A. I. Ramadhan, P. D. Atika, and K. F. Ramdhania, “Analisis Clustering K-Means untuk Pemetaan Tingkat Pengangguran Terbuka di Provinsi-Provinsi Indonesia Tahun 2013-2023,” vol. 5, no. 2, pp. 109–122, 2025.

K. Sugahara and K. Okamoto, “Hierarchical matrix factorization for interpretable collaborative filtering,” Pattern Recognit. Lett., vol. 180, pp. 99–106, 2024, doi: 10.1016/j.patrec.2024.03.003.

Published
2025-03-29
Abstract views: 111 times
Download PDF: 93 times
How to Cite
Tanjung, M., & Sriani, S. (2025). Clustering Library Loan Books Using K-Means Clustering. Journal of Information Systems and Informatics, 7(1), 889-908. https://doi.org/10.51519/journalisi.v7i1.1037
Section
Articles