The Influence of Presidential Debate Comment Sentiment on YouTube on Candidate Electability: Naïve Bayes and Pearson Analysis
Abstract
Campaigns significantly influence candidate electability. Presidential debates, a key campaign strategy, generate extensive public comments on social media, reflecting voter sentiment. This study employs VADER for automated sentiment labeling and Naïve Bayes for classification, analyzing comments from the KPU and Najwa Shihab YouTube channels. Electability data were sourced from national survey reports for correlation analysis. Pearson correlation results indicate that positive sentiment has a moderate negative correlation with electability, while negative sentiment shows a strong positive correlation. This suggests that negative sentiment in YouTube comments is more indicative of a candidate’s rising electability, whereas positive sentiment does not necessarily translate into increased support. The Naïve Bayes model achieved 65% accuracy, 59% precision, 57% recall, and 57% F1-score when including neutral comments. Excluding neutral comments improved accuracy to 77%, with 68% precision, 68% recall, and 67% F1-score. The dataset comprised 17,872 comments, ensuring a robust sample. Despite these findings, limitations exist, such as potential biases in sentiment classification and representativeness, as social media users may not fully reflect the general voting population. Furthermore, while correlation is established, causality remains uncertain, requiring further research. This study enhances the understanding of social media sentiment in political campaigns and highlights the importance of integrating online sentiment analysis with traditional polling methods for a comprehensive assessment of electability.
Downloads
References
F. P. Bariguna, A. Sulaeman, and W. Budi Darmawan, “Electoral Behavior in The Electability of Presidential and Vice Presidential Candidates in The 2019 Elections,” JIP (Jurnal Ilmu Pemerintahan) Kaji. Ilmu Pemerintah. dan Polit. Drh., vol. 6, no. 1, pp. 13–22, 2021, doi: 10.24905/jip.6.1.2021.13-22.
A. Brodersen, S. Scellato, and M. Wattenhofer, “YouTube around the world: Geographic popularity of videos,” Proc. 21st Annu. Conf. World Wide Web, pp. 241–250, 2012, doi: 10.1145/2187836.2187870.
A. Meiriza, E. Lestari, P. Putra, A. Monaputri, and D. A. Lestari, “Prediction Graduate Student Use Naive Bayes Classifier,” vol. 172, no. Siconian 2019, pp. 370–375, 2020, doi: 10.2991/aisr.k.200424.056.
S. J. Simoff, G. J. Williams, J. Galloway, and I. Kolyshkina, A U S D M 0 5 Edited by, no. May. 2014.
M. Zhikri and W. Istiono, “Handling Class Imbalance for Indonesian Twitter Sentiment Analysis A Comparative Study of Algorithms,” J. Syst. Manag. Sci., vol. 14, no. 10, pp. 170–179, 2024, doi: 10.33168/JSMS.2024.1010.
A. A. Farisi, Y. Sibaroni, and S. Al Faraby, “Sentiment analysis on hotel reviews using Multinomial Naïve Bayes classifier,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012024.
S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit,” J. Inform., vol. 15, no. 3, pp. 157–168, 2019.
S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 279, 2019, doi: 10.26418/jp.v5i3.34368.
M. G. Pradana, A. C. Nurcahyo, and P. H. Saputro, “Pengaruh Sentimen Di Sosial Media Dengan Harga Saham Perusahaan,” J. Ilm. Edutic, vol. 6, no. 2, 2020, doi: 10.21107/edutic.v6i2.6992.
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.
H. Sagala and H. Toba, “Penentuan Aspek yang Berpengaruh Terhadap Produk Smartphone Berdasarkan Ulasan Berbasis Tekstual,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 287–295, 2021, doi: 10.28932/jutisi.v7i1.3466.
C. J. Hutto and E. Gilbert, “VADER: A Parsimonious Rule-based Model for,” Eighth Int. AAAI Conf. Weblogs Soc. Media, pp. 216–225, 2014.
A. Fernández, S. García, F. Herrera, and N. V. Chawla, “SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” J. Artif. Intell. Res., vol. 61, pp. 863–905, 2018, doi: 10.1613/jair.1.11192.
N. N. Sholihah and A. Hermawan, “Implementation of Random Forest and Smote Methods for Economic Status Classification in Cirebon City,” J. Tek. Inform., vol. 4, no. 6, pp. 1387–1397, 2023, doi: 10.52436/1.jutif.2023.4.6.1135.
R. Peranginangin, E. J. G. Harianja, I. K. Jaya, and B. Rumahorbo, “Penerapan Algoritma Safe-Level-Smote Untuk Peningkatan Nilai G-Mean Dalam Klasifikasi Data Tidak Seimbang,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 67–72, 2020, doi: 10.46880/jmika.vol4no1.pp67-72.
J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting methods for multi-class imbalanced data classification: an experimental review,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00349-y.
S. Taheri and M. Mammadov, “Learning the naive bayes classifier with optimization models,” Int. J. Appl. Math. Comput. Sci., vol. 23, no. 4, pp. 787–795, 2013, doi: 10.2478/amcs-2013-0059.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods in Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.
M. N. Randhika, J. C. Young, A. Suryadibrata, and H. Mandala, “Implementasi Algoritma Complement dan Multinomial Naïve Bayes Classifier Pada Klasifikasi Kategori Berita Media Online,” Ultim. J. Tek. Inform., vol. 13, no. 1, pp. 19–25, 2021, doi: 10.31937/ti.v13i1.1921.
Miftahuddin, A. Pratama, and I. Setiawan, “Analisis Hubungan Antara Kelembaban Relatif Dengan Beberapa Variabel Iklim,” J. Siger Mat., vol. 02, no. 01, pp. 25–33, 2021.
N. Garg and K. Sharma, “Text pre-processing of multilingual for sentiment analysis based on social network data,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 776–784, 2022, doi: 10.11591/ijece.v12i1.pp776-784.
F. Jabnabillah and N. Margina, “Analisis Korelasi Pearson Dalam Menentukan Hubungan Antara Motivasi Belajar Dengan Kemandirian Belajar Pada Pembelajaran Daring,” J. Sintak, vol. 1, no. 1, pp. 14–18, 2022.


Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)