The Influence of Presidential Debate Comment Sentiment on YouTube on Candidate Electability: Naïve Bayes and Pearson Analysis

  • Arnoldus Yitzhak Petra Manoppo Universitas Multimedia Nusantara, Indonesia
  • Wirawan Istiono Universitas Multimedia Nusantara, Indonesia
Keywords: Machine Learning, Naïve Bayes, Pearson Correlation, Presidential Debate, Sentiment Analysis

Abstract

Campaigns significantly influence candidate electability. Presidential debates, a key campaign strategy, generate extensive public comments on social media, reflecting voter sentiment. This study employs VADER for automated sentiment labeling and Naïve Bayes for classification, analyzing comments from the KPU and Najwa Shihab YouTube channels. Electability data were sourced from national survey reports for correlation analysis. Pearson correlation results indicate that positive sentiment has a moderate negative correlation with electability, while negative sentiment shows a strong positive correlation. This suggests that negative sentiment in YouTube comments is more indicative of a candidate’s rising electability, whereas positive sentiment does not necessarily translate into increased support. The Naïve Bayes model achieved 65% accuracy, 59% precision, 57% recall, and 57% F1-score when including neutral comments. Excluding neutral comments improved accuracy to 77%, with 68% precision, 68% recall, and 67% F1-score. The dataset comprised 17,872 comments, ensuring a robust sample. Despite these findings, limitations exist, such as potential biases in sentiment classification and representativeness, as social media users may not fully reflect the general voting population. Furthermore, while correlation is established, causality remains uncertain, requiring further research. This study enhances the understanding of social media sentiment in political campaigns and highlights the importance of integrating online sentiment analysis with traditional polling methods for a comprehensive assessment of electability.

Downloads

Download data is not yet available.

References

F. P. Bariguna, A. Sulaeman, and W. Budi Darmawan, “Electoral Behavior in The Electability of Presidential and Vice Presidential Candidates in The 2019 Elections,” JIP (Jurnal Ilmu Pemerintahan) Kaji. Ilmu Pemerintah. dan Polit. Drh., vol. 6, no. 1, pp. 13–22, 2021, doi: 10.24905/jip.6.1.2021.13-22.

A. Brodersen, S. Scellato, and M. Wattenhofer, “YouTube around the world: Geographic popularity of videos,” Proc. 21st Annu. Conf. World Wide Web, pp. 241–250, 2012, doi: 10.1145/2187836.2187870.

A. Meiriza, E. Lestari, P. Putra, A. Monaputri, and D. A. Lestari, “Prediction Graduate Student Use Naive Bayes Classifier,” vol. 172, no. Siconian 2019, pp. 370–375, 2020, doi: 10.2991/aisr.k.200424.056.

S. J. Simoff, G. J. Williams, J. Galloway, and I. Kolyshkina, A U S D M 0 5 Edited by, no. May. 2014.

M. Zhikri and W. Istiono, “Handling Class Imbalance for Indonesian Twitter Sentiment Analysis A Comparative Study of Algorithms,” J. Syst. Manag. Sci., vol. 14, no. 10, pp. 170–179, 2024, doi: 10.33168/JSMS.2024.1010.

A. A. Farisi, Y. Sibaroni, and S. Al Faraby, “Sentiment analysis on hotel reviews using Multinomial Naïve Bayes classifier,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012024.

S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit,” J. Inform., vol. 15, no. 3, pp. 157–168, 2019.

S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 279, 2019, doi: 10.26418/jp.v5i3.34368.

M. G. Pradana, A. C. Nurcahyo, and P. H. Saputro, “Pengaruh Sentimen Di Sosial Media Dengan Harga Saham Perusahaan,” J. Ilm. Edutic, vol. 6, no. 2, 2020, doi: 10.21107/edutic.v6i2.6992.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.

H. Sagala and H. Toba, “Penentuan Aspek yang Berpengaruh Terhadap Produk Smartphone Berdasarkan Ulasan Berbasis Tekstual,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 287–295, 2021, doi: 10.28932/jutisi.v7i1.3466.

C. J. Hutto and E. Gilbert, “VADER: A Parsimonious Rule-based Model for,” Eighth Int. AAAI Conf. Weblogs Soc. Media, pp. 216–225, 2014.

A. Fernández, S. García, F. Herrera, and N. V. Chawla, “SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” J. Artif. Intell. Res., vol. 61, pp. 863–905, 2018, doi: 10.1613/jair.1.11192.

N. N. Sholihah and A. Hermawan, “Implementation of Random Forest and Smote Methods for Economic Status Classification in Cirebon City,” J. Tek. Inform., vol. 4, no. 6, pp. 1387–1397, 2023, doi: 10.52436/1.jutif.2023.4.6.1135.

R. Peranginangin, E. J. G. Harianja, I. K. Jaya, and B. Rumahorbo, “Penerapan Algoritma Safe-Level-Smote Untuk Peningkatan Nilai G-Mean Dalam Klasifikasi Data Tidak Seimbang,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 67–72, 2020, doi: 10.46880/jmika.vol4no1.pp67-72.

J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting methods for multi-class imbalanced data classification: an experimental review,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00349-y.

S. Taheri and M. Mammadov, “Learning the naive bayes classifier with optimization models,” Int. J. Appl. Math. Comput. Sci., vol. 23, no. 4, pp. 787–795, 2013, doi: 10.2478/amcs-2013-0059.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods in Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.

M. N. Randhika, J. C. Young, A. Suryadibrata, and H. Mandala, “Implementasi Algoritma Complement dan Multinomial Naïve Bayes Classifier Pada Klasifikasi Kategori Berita Media Online,” Ultim. J. Tek. Inform., vol. 13, no. 1, pp. 19–25, 2021, doi: 10.31937/ti.v13i1.1921.

Miftahuddin, A. Pratama, and I. Setiawan, “Analisis Hubungan Antara Kelembaban Relatif Dengan Beberapa Variabel Iklim,” J. Siger Mat., vol. 02, no. 01, pp. 25–33, 2021.

N. Garg and K. Sharma, “Text pre-processing of multilingual for sentiment analysis based on social network data,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 776–784, 2022, doi: 10.11591/ijece.v12i1.pp776-784.

F. Jabnabillah and N. Margina, “Analisis Korelasi Pearson Dalam Menentukan Hubungan Antara Motivasi Belajar Dengan Kemandirian Belajar Pada Pembelajaran Daring,” J. Sintak, vol. 1, no. 1, pp. 14–18, 2022.

Published
2025-03-25
Abstract views: 106 times
Download PDF: 75 times
How to Cite
Manoppo, A. Y., & Istiono, W. (2025). The Influence of Presidential Debate Comment Sentiment on YouTube on Candidate Electability: Naïve Bayes and Pearson Analysis. Journal of Information Systems and Informatics, 7(1), 758-778. https://doi.org/10.51519/journalisi.v7i1.1001
Section
Articles