Classifying Legendary Pokémon with SF-Random Forest Algorithm
Abstract
Here’s an improved version of the abstract with better articulation: Accurate classification of legendary Pokémon is essential due to their distinct characteristics compared to regular Pokémon, impacting various domains such as research, gaming, and strategy development. This study employs the SF-Random Forest algorithm, an advanced variant of Random Forest, designed to effectively handle data heterogeneity and complexity. The dataset comprises 800 Pokémon samples, including attributes like type, base stats (HP, Attack, Defense, etc.), and other relevant features. To address the inherent imbalance between legendary and non-legendary Pokémon, the data preprocessing phase includes outlier removal, handling of missing values, normalization through Min-Max Scaling, and class balancing using the SMOTE (Synthetic Minority Over-sampling Technique) method. The preprocessed data is then used to train the SF-Random Forest model, with performance evaluated using metrics such as accuracy, precision, recall, and F1-score. The results reveal that SF-Random Forest achieves perfect scores across all metrics, demonstrating 100% accuracy, precision, recall, and F1-score. This highlights the algorithm's superior ability to identify key features and manage data imbalance compared to traditional classification methods. The study underscores the efficiency and robustness of SF-Random Forest as a classification tool, paving the way for the development of more advanced classification systems applicable to various fields requiring complex pattern recognition.
Downloads
References
S. Mayuri, M. Nagdive, P. Choudhari, S. Akolkar, and M. Mhatre, "Design and Development of Pokémon Information Center Using RESTful Web Services Based on Android," Int. J. Comput. Sci. Eng., vol. 6, no. 5, pp. 1152-1156, May 2018.
S. d. S. Oliveira, G. E. P. Lima Silva, A. C. Gorgonio, C. A. S. Barreto, A. M. P. Canuto, and B. M. Carvalho, "Team Recommendation for the Pokémon GO Game Using Optimization Approaches," in Proc. 2020 Brazilian Symp. Games Digit. Entertain. (SBGames), São Paulo, Brazil, 2020, pp. 142-150. doi: 10.1109/SBGames51465.2020.00030.
H. Yu, J. S. Hui, G. Zhong, J. Dong, S. Zhang, and H. Yu, "Random Shapley Forests: Cooperative Game-Based Random Forests With Consistency," IEEE Trans. Cybern., vol. 52, no. 1, pp. 50-60, Jan. 2022. doi: 10.1109/TCYB.2020.2972956.
A. Tuzcu, S. W. Rausch, and A. Stadler, "A Machine Learning Based Predictive Analysis Use Case for eSports Games," in Proc. 2023 IEEE Conf. Games (CoG), Osaka, Japan, 2023, pp. 25-35.
D. Yuan, C. Wu, Y. Wang, and M. Sun, "Improved Random Forest Classification Approach Based on Hybrid Clustering Selection," J. Ambient Intell. Humanized Comput., vol. 11, no. 2, pp. 965-975, Feb. 2020. doi: 10.1007/s12652-019-01534-y.
A. L. Latifah, I. N. Wahyuni, A. Shabrina, and R. Sadikin, "Evaluation of Random Forest Model for Forest Fire Prediction Based on Climatology Over Borneo," in Proc. 2019 Int. Conf. Comput., Control, Informatics Appl. (IC3INA), Tangerang, Indonesia, 2019, pp. 47-51. doi: 10.1109/IC3INA48034.2019.8949588.
M. C. Santana, A. M. Gomes, and C. H. Costa, "A Hybrid Approach for Evolving Rules in Fuzzy Systems Using Genetic Algorithms," IEEE Trans. Fuzzy Syst., vol. 27, no. 2, pp. 347-361, Feb. 2019. doi: 10.1109/TFUZZ.2018.2869980.
S. M. Silva, R. F. Berriel, T. Oliveira-Santos, A. F. De Souza, and T. M. Paixão, "Adaptive Deep Learning Through Early Exits," IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 10, pp. 4587-4599, Oct. 2021. doi: 10.1109/TNNLS.2020.3023139.
A. B. Khan, M. S. Uddin, and M. H. Kabir, "SMOTE-Based Oversampling Technique and Feature Selection for Improving Classification of Imbalanced Data," IEEE Access, vol. 9, pp. 30187-30196, Feb. 2021. doi: 10.1109/ACCESS.2021.3060054.
M. G. Omran, A. P. Engelbrecht, and A. Salman, "Image Classification Using Particle Swarm Optimization," IEEE Trans. Evol. Comput., vol. 12, no. 5, pp. 612-625, Oct. 2008. doi: 10.1109/TEVC.2008.927706.
S. Diantika, H. Nalatissifa, R. Supriyadi, N. Maulidah, and A. Fauzi, "Implementasi Multi-Class Gradient Boosting untuk Mengklasifikasikan Jenis Hewan pada Kebun Binatang," Antivirus: J. Ilmu Komput., vol. 17, no. 1, pp. 32-40, May 2023. doi: 10.35457/antivirus.v17i1.2812.
P. R. Togatorop, M. Sianturi, D. Simamora, and D. Silaen, "Optimizing Random Forest Using Genetic Algorithm for Heart Disease Classification," PIKSEL: Penelitian Ilmu Komput. Syst. Embedded Logic, vol. 11, no. 1, pp. 13-20, Apr. 2022. doi: 10.33558/piksel.v11i1.5886.
M. M. Reddy, A. Deekshitha, M. Y. Babu, R. Naveen, R. V. Bharath, and M. Srujan, "Prediction of Liver Disease with Random Forest Classifier through SMOTE-ENN Balancing," Int. J. Adv. Sci. Technol., vol. 29, no. 7, pp. 5181-5186, Dec. 2020.
J. Portisch, N. Heist, and H. Paulheim, "Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction–Two Sides of the Same Coin?," Semantic Web (Preprint), vol. 11, no. 3, pp. 1-24, 2022.
T. T. Hanifa, Adiwijaya, and S. Faraby, "Analisis Churn Prediction pada Data Pelanggan PT. Telekomunikasi dengan Logistic Regression dan Underbagging," eProceeding Eng., vol. 4, no. 2, pp. 3210-3225, 2017.
V. R. Prasetyo, M. Mercifia, A. Averina, L. Sunyoto, and B. Budiarjo, "Prediksi Rating Film pada Website IMDB Menggunakan Metode Neural Network," J. Ilmiah NERO, vol. 7, no. 1, pp. 1-8, 2022.
W. Winata, P. L. Dewi, and N. A. Tjondrowiguno, "Prediksi Skor Pertandingan Sepak Bola Menggunakan Neuroevolution of Augmenting Topologies dan Backpropagation," J. Infra, vol. 8, no. 1, pp. 249-254, 2020.
P. R. Sihombing and A. M. Arsani, "Perbandingan Metode Machine Learning dalam Klasifikasi Kemiskinan di Indonesia Tahun 2018," J. Tek. Inform., vol. 2, no. 1, pp. 51-56, 2021.
I. Oktanisa and A. A. Supianto, "Perbandingan Teknik Klasifikasi dalam Data Mining untuk Bank Direct Marketing," J. Teknol. Inform. Ilmu Komput., vol. 5, no. 5, pp. 567-576, 2018.
M. S. Hossain, M. N. M. S. Elbasher, and S. Chakrabarty, "A Review on Machine Learning Algorithms for Predictive Analysis in Smart Agriculture," IEEE Access, vol. 9, pp. 171819-171847, Dec. 2021. doi: 10.1109/ACCESS.2021.3136691.
R. Siringoringo, "Klasifikasi Data Tidak Seimbang Menggunakan Algoritma SMOTE dan K-Nearest Neighbor," J. Inf. Syst. Dev., vol. 3, no. 1, pp. 44-49, 2018.
M. Hao, Y. Wang, and S. H. Bryant, "An Efficient Algorithm Coupled with Synthetic Minority Over-sampling Technique to Classify Imbalanced PubChem BioAssay Data," Anal. Chim. Acta, vol. 860, pp. 117-127, Feb. 2015. doi: 10.1016/j.aca.2015.01.002.
K. R. Hapsari and T. Indriyani, "Implementasi Algoritma SMOTE sebagai Penyelesaian Imbalance High Dimensional Datasets," in Proc. Semin. Nas. Tek. Elektro, Sist. Inform. Tek. Inform. (SNESTI), Surabaya, Indonesia, 2022, pp. 427-432.
J. Xiao, L. Xie, C. He, and X. Jiang, "Dynamic Classifier Ensemble Model for Customer Classification with Imbalanced Class Distribution," Expert Syst. Appl., vol. 39, no. 3, pp. 3668-3675, Feb. 2012. doi: 10.1016/j.eswa.2011.09.043.
A. Primajaya and B. N. Sari, "Random Forest Algorithm for Prediction of Precipitation," Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, pp. 27-33, Mar. 2018.
J. Yang, J. Gong, W. Tang, Y. Shen, C. Liu, and J. Gao, "Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios," Sustainability, vol. 11, no. 3, pp. 1-18, Feb. 2019. doi: 10.3390/su11030867.
Download PDF: 74 times
Copyright (c) 2024 Journal of Information Systems and Informatics
This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)