A Review of Fuzzy Cognitive Maps Extensions and Learning

  • Eli Adama Jiya Federal University Dutsin-Ma, Nigeria
  • Obunadike N Georgina University of Nigeria Nsukka, Nigeria
  • Atomatofa Emmanuel O. Western Delta University, Nigeria
Keywords: fuzzy cognitive maps, learning algorithms, fuzzy cognitive map learning,, evolutionary learning


Fuzzy Cognitive Maps (FCM)  is a soft computing technique whose vertices and edges are fuzzy values with an inference mechanism for solving modelling problems; it has been used in modelling complex systems like industrial and process control. The concept was first introduced in 1986, with an initial learning algorithm in 1996; several works have been published on FCM methodology, learnings and applications. Fuzzy cognitive maps continue to evolve both in theory, learning algorithms and application. Many theories like intuitionistic theory, hesitancy theory, grey system theory, wavelet theory, etc., are integrated with the conventional FCM. These extensions have improved Fuzzy cognitive Maps to handle problems of uncertainty, incomplete information, hesitancy, dynamic systems and probabilistic fuzzy events. They also strengthen fuzzy cognitive Maps’ modelling power for application in almost any domain. However, the compilation of the development in methodology and adaptation of FCM are either old or omitted some of the recent advances or focused on specific applications of FCM in some areas. This paper reports extension, learning and applications of FCM from the initial conventional FCM to recent extensions and some of the important features of those extensions and learning.


Download data is not yet available.

Author Biography

Obunadike N Georgina, University of Nigeria Nsukka

Associate Professor

department of Cmputer Science


J. Subramanian, A. Karmegam, and E. Papageorgiou, “An integrated breast cancer risk assessment and management model based on fuzzy cognitive maps,” Comput. Methods Programs Biomed., vol. 118, no. 3, pp. 280–297, 2015, doi: 10.1016/j.cmpb.2015.01.001.

E. Bakhtavar, M. Valipour, S. Yousefi, R. Sadiq, and K. Hewage, “Fuzzy cognitive maps in systems risk analysis : a comprehensive review,” Complex Intell. Syst., vol. 7, no. 2, pp. 621–638, 2021, doi: 10.1007/s40747-020-00228-2.

G. I. Edwards and K. Kok, “Current Research in Environmental Sustainability Building a Fuzzy Cognitive Map from stakeholder knowledge : An Episodic , asynchronous approach,” Curr. Res. Environ. Sustain., vol. 3, no. June, p. 100053, 2021, doi: 10.1016/j.crsust.2021.100053.

J. L. Salmeron and P. R. Palos-sanchez, “Uncertainty Propagation in Fuzzy Grey Cognitive Maps With Hebbian-Like Learning Algorithms,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 211–220, 2017.

B. Kosko, “Fuzzy Cognitive Maps - Kosko.1986,” International Journal of Man-Machine Studies, no. 24. pp. 65–75, 1986.

J. A. Dickerson and B. Kosko, “Virtual worlds as fuzzy cognitive maps,” Presence: Teleoper. Virtual Environ., vol. 3, no. 2, pp. 173–189, 1994.

E. I. Papageorgiou and J. L. Salmeron, “A review of fuzzy cognitive maps research during the last decade,” IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 66–79, 2013, doi: 10.1109/TFUZZ.2012.2201727.

G. Felix, G. Nápoles, R. Falcon, W. Froelich, K. Vanhoof, and R. Bello, “A review on methods and software for fuzzy cognitive maps,” Artif. Intell. Rev., vol. 52, no. 3, 2019, doi: 10.1007/s10462-017-9575-1.

W. Stach, L. Kurgan, and W. Pedrycz, “A survey of fuzzy cognitive map learning methods,” Issues soft Comput. theory Appl., pp. 71–84, 2005.

E. I. Papageorgiou, “Learning algorithms for fuzzy cognitive maps - A review study,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 2, pp. 150–163, 2012, doi: 10.1109/TSMCC.2011.2138694.

G. Felix, G. NAPOLES RUIZ, R. Falcon, W. Froelich, K. VANHOOF, and R. Bello, “A review on methods and software for fuzzy cognitive,” Artif. Intell. Rev., vol. 52, no. 3, pp. 1707–1737, 2017, doi: 10.1007/s10462-017-9575-1.

A. P. Siddaway, A. M. Wood, and L. V Hedges, “How to Do a Systematic Review : A Best Practice Guide for Conducting and Reporting Narrative Reviews , Meta-Syntheses.”

B. T. Johnson and E. A. Hennessy, “Systematic reviews and meta-analyses in the health sciences: Best practice methods for research syntheses,” pp. 237–251, 2021, doi: 10.1016/j.socscimed.2019.05.035.Systematic.

E. A. Jiya, F. S. Bakpo, and B. E. Fawole, “Fuzzy Cognitive Map and Nonlinear Hebbian Learning Algorithms for Modelling and Controlling Intra-State Conflict in Nigeria,” FUDMA J. Sci., vol. 2, no. 1, pp. 223–230, 2018.

E. I. Papageorgiou and P. Oikonomou, “Bagged Nonlinear Hebbian Learning for Fuzzy Cognitive Maps working on classification Tasks,” in SETN 2012, 2012, no. May, pp. 157–164, doi: 10.1007/978-3-642-30448-4.

H. J. Song, Z. Q. Shen, C. Y. Miao, Z. Q. Liu, and Y. Miao, “Probabilistic fuzzy cognitive map,” IEEE Int. Conf. Fuzzy Syst., pp. 1221–1228, 2006, doi: 10.1109/FUZZY.2006.1681865.

J. Kim, M. Han, Y. Lee, and Y. Park, “Futuristic data-driven scenario building : Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map,” Expert Syst. Appl., vol. 57, no. 2016, pp. 311–323, 2016, doi: 10.1016/j.eswa.2016.03.043.

E. S. Vergini and P. P. Groumpos, “A new conception on the Fuzzy Cognitive Maps method,” IFAC-PapersOnLine, vol. 49, no. 29, pp. 300–304, 2016, doi: 10.1016/j.ifacol.2016.11.083.

J. L. Salmeron and E. Gutierrez, “Fuzzy Grey Cognitive Maps in reliability engineering,” Appl. Soft Comput. J., vol. 12, no. 12, pp. 3818–3824, 2012, doi: 10.1016/j.asoc.2012.02.003.

J. L. Salmeron, “A Fuzzy Grey Cognitive Maps-based intelligent security system,” Proc. IEEE Int. Conf. Grey Syst. Intell. Serv. GSIS, vol. 2015-Octob, pp. 29–32, 2015, doi: 10.1109/GSIS.2015.7301813.

J. L. Salmeron and E. I. Papageorgiou, “Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control,” Appl. Intell., vol. 41, no. 1, pp. 223–234, 2014, doi: 10.1007/s10489-013-0511-z.

J. L. Salmeron and E. I. Papageorgiou, “Learning fuzzy grey cognitive maps using nonlinear Hebbian-based approach,” Int. J. Approx. Reason., vol. 53, no. 1, pp. 54–65, 2012, doi: 10.1016/j.ijar.2011.09.006.

F. Shen, J. Liu, and K. Wu, “Evolutionary multitasking fuzzy cognitive map learning,” Knowledge-Based Syst., 2019, doi: 10.1016/j.knosys.2019.105294.

G. D. Karatzinis and Y. S. Boutalis, “Fuzzy cognitive networks with functional weights for time series and pattern recognition applications,” Appl. Soft Comput., vol. 106, p. 107415, 2021, doi: 10.1016/j.asoc.2021.107415.

L. Concepción, G. Napoles, R. Falcon, R. Bello, and K. Vanhoof, “Unveiling the Dynamic Behavior of Fuzzy Cognitive Maps,” IEEE Trans. Fuzzy Syst., no. February, 2020, doi: 10.1109/TFUZZ.2020.2973853.

L. J. Mazlack, “Representing causality using fuzzy cognitive maps,” Annu. Conf. North Am. Fuzzy Inf. Process. Soc. - NAFIPS, 2009, doi: 10.1109/NAFIPS.2009.5156434.

T. Sarkar et al., “The Fuzzy Cognitive Map–Based Shelf-life Modelling for Food Storage,” Food Anal. Methods, vol. 15, no. 3, 2022, doi: 10.1007/s12161-021-02147-5.

K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, “Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites,” Eng. Appl. Artif. Intell., vol. 59, no. September 2016, pp. 35–50, 2017, doi: 10.1016/j.engappai.2016.12.014.

C. Chen and Y. Chiu, “A study of dynamic fuzzy cognitive map model with group consensus based on linguistic variables,” Technol. Forecast. Soc. Chang., vol. 171, no. June, p. 120948, 2021, doi: 10.1016/j.techfore.2021.120948.

P. Szwed, “Classification and feature transformation with Fuzzy Cognitive Maps,” Appl. Soft Comput., vol. 105, p. 107271, 2021, doi: 10.1016/j.asoc.2021.107271.

G. Nápoles, A. Jastrz, and C. Mosquera, “Deterministic learning of hybrid Fuzzy Cognitive Maps and network reduction approaches,” Neural Networks, 2020, doi: 10.1016/j.neunet.2020.01.019.

J. P. Carvalho and J. A. B. Tomé, “Rule Based Fuzzy Cognitive Maps : Fuzzy Causal Relations,” Comput. Intell. Model. Control Autom., vol. 199, no. 9, 1999.

J. Aguilar, “Dynamic Random Fuzzy Cognitive Maps,” Comput. y Sist., vol. 7, no. 4, pp. 260–270, 2004.

J. Aguilar, “A fuzzy cognitive map based on the random neural model,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001, vol. 2070, doi: 10.1007/3-540-45517-5_37.

J. Aguilar, “Adaptive random fuzzy cognitive maps,” in Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2002, vol. 2527, doi: 10.1007/3-540-36131-6_41.

A. K. Tsadiras and K. G. Margaritis, “Using certainty neurons in fuzzy cognitive maps,” Neural Netw. World, vol. 6, no. 4, 1996.

A. K. Tsadiras and K. G. Margaritis, “Cognitive mapping and certainty neuron fuzzy cognitive maps,” Inf. Sci. (Ny)., vol. 101, no. 1–2, 1997, doi: 10.1016/S0020-0255(97)00001-7.

A. S. Andreou, N. . Mateou, and Zombanakis, “Evolutionary Fuzzy Cognitive Maps: A Hybrid System for Crisis Management and Political Decision-Making,” in Proceedings of the Computational Intelligent for Modeling, Control & Automation CIMCA, 2003, pp. 732–743.

M. Hagiwara, “Extended Fuzzy Cognitive Maps,” IEEJ Trans. Electron. Inf. Syst., vol. 114, no. 3, pp. 367–372, 1994.

M. Stula, D. Stipanicev, and L. Bodrozic, “Intelligent Modeling with Agent-Based Fuzzy Cognitive Map,” vol. 25, pp. 981–1004, 2010, doi: 10.1002/int.

A. Peña, H. Sossa, and F. Gutierrez, “Ontology Agent Based Rule Base Fuzzy Cognitive Maps,” pp. 328–337, 2007.

J. Chen, X. Gao, and J. Rong, “Enhance the uncertainty modeling ability of fuzzy grey cognitive maps by general grey number,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3021721.

K. Wu, J. Liu, and Y. Chi, “Wavelet fuzzy cognitive maps,” Neurocomputing, vol. 232, pp. 94–103, 2017, doi: 10.1016/j.neucom.2016.10.071.

A. Amirkhani, E. I. Papageorgiou, and M. R. Mosavi, “A novel medical decision support system based on fuzzy cognitive maps enhanced by intuitive and learning capabilities for modeling uncertainty,” Appl. Math. Comput., vol. 337, pp. 562–582, 2018, doi: 10.1016/j.amc.2018.05.032.

G. Feng, W. Lu, and J. Yang, “The modeling of time series based on least square fuzzy cognitive map,” Algorithms, vol. 14, no. 3, 2021, doi: 10.3390/a14030069.

A. Amirkhani, M. Shirzadeh, T. Kumbasar, and B. Mashadi, “A framework for designing cognitive trajectory controllers using genetically evolved interval type-2 fuzzy cognitive maps,” Int. J. Intell. Syst., vol. 37, no. 1, 2022, doi: 10.1002/int.22626.

A. Baykasoğlu and İ. Gölcük, “Alpha-cut based fuzzy cognitive maps with applications in decision-making,” Comput. Ind. Eng., vol. 152, 2021, doi: 10.1016/j.cie.2020.107007.

B. Kang, H. Mo, R. Sadiq, and Y. Deng, “Generalized fuzzy cognitive maps : a new extension of fuzzy cognitive maps,” Int. J. Syst. Assur. Eng. Manag., 2016, doi: 10.1007/s13198-016-0444-0.

Y. Miao, Z. Q. Liu, C. K. Slew, and C. Y. Miao, “Dynamical cognitive network-an extension of fuzzy cognitive map,” IEEE Trans. Fuzzy Syst., vol. 9, no. 5, 2001, doi: 10.1109/91.963762.

J. Chen, X. Gao, J. Rong, and X. Gao, “The dynamic extensions of fuzzy grey cognitive maps,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3096058.

Y. Zhang, J. Qin, P. Shi, and Y. Kang, “High-order intuitionistic fuzzy cognitive map based on evidential reasoning theory,” IEEE Trans. Fuzzy Syst., vol. 27, no. 1, pp. 16–30, Jan. 2019, doi: 10.1109/TFUZZ.2018.2853727.

G. Kyriakarakos, A. I. Dounis, K. G. Arvanitis, and G. Papadakis, “Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey,” Appl. Energy, vol. 187, pp. 575–584, 2017, doi: 10.1016/j.apenergy.2016.11.077.

E. I. Papageorgiou and A. Kannappan, “Fuzzy cognitive map ensemble learning paradigm to solve classification problems : Application to autism identification,” Appl. Soft Comput. J., vol. 12, no. 12, pp. 3797–3808, 2012, doi: 10.1016/j.asoc.2012.03.064.

M. J. Rezaee, S. Yousefi, and M. Babaei, “Multi-stage cognitive map for failures assessment of production processes: An extension in structure and algorithm,” Neurocomputing, vol. 232, pp. 69–82, 2017, doi: 10.1016/j.neucom.2016.10.069.

G. Nápoles, E. Papageorgiou, R. Bello, and K. Vanhoof, “Learning and Convergence of Fuzzy Cognitive Maps Used in Pattern Recognition,” Neural Process. Lett., 2016, doi: 10.1007/s11063-016-9534-x.

J. L. Salmeron, “Fuzzy cognitive maps for artificial emotions forecasting,” Appl. Soft Comput. J., vol. 12, no. 12, pp. 3703–3709, 2012, doi: 10.1016/j.asoc.2012.01.015.

H. Huang, R. Zuo, M. Hu, Y. Tao, and L. Kou, “Robot Emotion Response Model Based on Fuzzy Cognitive Map,” Dianzi Yu Xinxi Xuebao/Journal Electron. Inf. Technol., vol. 44, no. 2, 2022, doi: 10.11999/JEIT210601.

V. Boglou, C. S. Karavas, A. Karlis, and K. Arvanitis, “An intelligent decentralized energy management strategy for the optimal electric vehicles’ charging in low-voltage islanded microgrids,” Int. J. Energy Res., vol. 46, no. 3, 2022, doi: 10.1002/er.7358.

E. S. Vergini and P. P. Groumpos, “Advanced state fuzzy cognitive maps applied on nearly zero energy building model,” in IFAC-PapersOnLine, 2021, vol. 54, no. 13, doi: 10.1016/j.ifacol.2021.10.504.

Z. S. Ghaboulian, M. Alipour, M. Hafezi, R. A. Stewart, and A. Rahman, “Examining wind energy deployment pathways in complex macro-economic and political settings using a fuzzy cognitive map-based method,” Energy, vol. 238, 2022, doi: 10.1016/j.energy.2021.121673.

J. Tang et al., “Resource Allocation for Energy Efficiency Optimization in Heterogeneous Networks,” IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2104–2117, 2015, doi: 10.1109/JSAC.2015.2435351.

E. S. Vergini, “A new conception on the Fuzzy Fuzzy Maps method Maps method,” 2016, doi: 10.1016/j.ifacol.2016.11.083.

P. Szwed and P. Skrzyński, “A new lightweight method for security risk assessment based on fuzzy cognitivemaps,” Int. J. Appl. Math. Comput. Sci., vol. 24, no. 1, 2014, doi: 10.2478/amcs-2014-0016.

Z. Fan, C. Tan, and X. Li, “A hierarchical method for assessing cyber security situation based on ontology and fuzzy cognitive maps,” Int. J. Inf. Comput. Secur., vol. 14, no. 3–4, 2021, doi: 10.1504/ijics.2021.114704.

P. Szwed, P. Skrzynski, and W. Chmiel, “Risk assessment for a video surveillance system based on Fuzzy Cognitive Maps,” Multimed. Tools Appl., vol. 75, no. 17, 2016, doi: 10.1007/s11042-014-2047-6.

S. Poomagal, R. Sujatha, P. S. Kumar, and D. V. N. Vo, “A fuzzy cognitive map approach to predict the hazardous effects of malathion to environment (air, water and soil),” Chemosphere, vol. 263, 2021, doi: 10.1016/j.chemosphere.2020.127926.

S. Shahvi, P. E. Mellander, P. Jordan, and O. Fenton, “A Fuzzy Cognitive Map method for integrated and participatory water governance and indicators affecting drinking water supplies,” Sci. Total Environ., vol. 750, 2021, doi: 10.1016/j.scitotenv.2020.142193.

X. Liu, Y. Zhang, J. Wang, H. Huang, and H. Yin, “Multi-source and multivariate ozone prediction based on fuzzy cognitive maps and evidential reasoning theory,” Appl. Soft Comput., vol. 119, 2022, doi: 10.1016/j.asoc.2022.108600.

A. Tlili and S. Chikhi, “Risks analyzing and management in software project management using fuzzy cognitive maps with reinforcement learning,” Inform., vol. 45, no. 1, 2021, doi: 10.31449/inf.v45i1.3104.

P. Szwed and P. Skrzynski, “A New Lightweight Method For Security Risk Assessment,” Appl. Math. Comput. Sci., vol. 24, no. 1, pp. 213–225, 2014, doi: 10.2478/amcs-2014-0016.

V. K. Mago et al., “Analyzing the impact of social factors on homelessness: a Fuzzy Cognitive Map approach,” BMC Med. Inform. Decis. Mak., vol. 13, no. 1, pp. 2–19, 2013.

C. Murungweni, M. T. van Wijk, J. A. Andersson, E. M. A. Smaling, and K. E. Giller, “Application of fuzzy cognitive mapping in livelihood vulnerability analysis,” Ecol. Soc., vol. 16, no. 4, 2011, doi: 10.5751/ES-04393-160408.

R. E. T. Jones, E. S. Connors, M. E. Mossey, J. R. Hyatt, N. J. Hansen, and M. R. Endsley, “Modeling situation awareness for army infantry platoon leaders using fuzzy cognitive mapping techniques,” 19th Annu. Conf. Behav. Represent. Model. Simul. 2010, BRiMS 2010, no. March, pp. 159–166, 2010.

S. Sacchelli and S. Fabbrizzi, “Socio-Economic Planning Sciences Minimisation of uncertainty in decision-making processes using optimised probabilistic Fuzzy Cognitive Maps : A case study for a rural sector,” Socioecon. Plann. Sci., vol. 52, pp. 31–40, 2015, doi: 10.1016/j.seps.2015.10.002.

T. A. Gemtos, G. Nanos, and E. Papageorgiou, “Yield prediction in apples using Fuzzy Cognitive Map learning approach,” Comput. Electron. Agric., vol. 91, pp. 19–29, 2013, doi: http://dx.doi.org/10.1016/j.compag.2012.11.008.

R. Natarajan, J. Subramanian, and E. I. Papageorgiou, “Hybrid learning of fuzzy cognitive maps for sugarcane yield classification,” Comput. Electron. Agric., vol. 127, pp. 147–157, 2016, doi: 10.1016/j.compag.2016.05.016.

P. Hajek and O. Prochazka, “Interval-valued fuzzy cognitive maps with genetic learning for predicting corporate financial distress,” Filomat, vol. 32, no. 5, pp. 1657–1662, 2018, doi: 10.2298/FIL1805657H.

G. A. Papakostas and D. E. Koulouriotis, “Classifying patterns using Fuzzy Cognitive Maps,” Stud. Fuzziness Soft Comput., vol. 247, no. September, pp. 291–306, 2010, doi: 10.1007/978-3-642-03220-2_12.

M. A. Al-Gunaid, I. I. Salygina, M. V. Shcherbakov, V. N. Trubitsin, and P. P. Groumpos, “Forecasting potential yields under uncertainty using fuzzy cognitive maps,” Agric. Food Secur., vol. 10, no. 1, 2021, doi: 10.1186/s40066-021-00314-9.

A. Rogachev, E. Melikhova, and T. Pleschenko, “Recurrent Method for Constructing Fuzzy Cognitive Maps for Food Security Assessment,” Int. J. Qual. Res., vol. 16, no. 1, pp. 111–118, 2022, doi: 10.24874/IJQR16.01-07.

M. Ameli, Z. Shams Esfandabadi, S. Sadeghi, M. Ranjbari, and M. C. Zanetti, “COVID-19 and Sustainable Development Goals (SDGs): Scenario analysis through fuzzy cognitive map modeling,” Gondwana Res., 2022, doi: 10.1016/j.gr.2021.12.014.

A. V. Huerga, “A balanced differential learning algorithm in fuzzy cognitive Maps,” in Proceedings of the 16th International Workshop on Qualitative Reasoning, 2002, vol. 2002.

E. Papageorgiou, C. Stylios, and P. Groumpos, “Fuzzy cognitive map learning based on nonlinear hebbian rule,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2903, pp. 256–268, 2003, doi: 10.1007/978-3-540-24581-0_22.

S.-J. Li and R.-M. Shen, “Fuzzy Cognitive Map Learning Based on Improved Nonlinear Hebbian Rule,” Proc. Third Int. Conf. Mach. Learn. Cybern. Shanghai, no. August, pp. 26–29, 2004, doi: 10.1007/978-3-540-24581-0_22.

E. I. Papageorgiou, C. D. Stylios, and P. P. Groumpos, “Active Hebbian learning algorithm to train fuzzy cognitive maps,” Int. J. Approx. Reason., vol. 37, no. 3, pp. 219–249, 2004, doi: 10.1016/j.ijar.2004.01.001.

W. Stach, L. Kurgan, and W. Pedrycz, “Data-driven nonlinear Hebbian learning method for fuzzy cognitive maps,” IEEE Int. Conf. Fuzzy Syst., pp. 1975–1981, 2008, doi: 10.1109/FUZZY.2008.4630640.

N. H. Mateou, M. Moiseos, and A. S. Andreou, “Multi-objective evolutionary fuzzy cognitive maps for decision support,” 2005 IEEE Congr. Evol. Comput. IEEE CEC 2005. Proc., vol. 1, pp. 824–830, 2005, doi: 10.1109/cec.2005.1554768.

W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Genetic learning of fuzzy cognitive maps,” Fuzzy Sets Syst., vol. 153, no. 3, pp. 371–401, 2005, doi: 10.1016/j.fss.2005.01.009.

Z. Ding, D. Li, and J. Jia, “First Study of Fuzzy Cognitive Map Learning Using Ants colony Optimization,” J. Comput. Inf. Syst., vol. 7, no. 13, p. Journal of Computati 4756-4763, 2011.

A. Baykasoglu, Z. D. U. Durmusoglu, and V. Kaplanoglu, “Training fuzzy cognitive maps via extended great deluge algorithm with applications,” Comput. Ind., vol. 62, no. 2, pp. 187–195, 2011, doi: 10.1016/j.compind.2010.10.011.

Y. Chi and J. Liu, “Learning of fuzzy cognitive maps with varying densities using a multiobjective evolutionary algorithm,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 71–81, 2016, doi: 10.1109/TFUZZ.2015.2426314.

E. I. Papageorgiou, K. E. Parsopoulos, C. S. Stylios, P. P. Groumpos, and M. N. Vrahatis, “Fuzzy cognitive maps learning using particle swarm optimization,” J. Intell. Inf. Syst., vol. 25, no. 1, pp. 95–121, 2005, doi: 10.1007/s10844-005-0864-9.

K. Wu and J. Liu, “Robust learning of large-scale fuzzy cognitive maps via the lasso from noisy time series,” Knowledge-Based Syst., vol. 113, pp. 23–38, 2016, doi: 10.1016/j.knosys.2016.09.010.

K. Mls, R. Cimler, J. Vaščák, and M. Puheim, “Interactive evolutionary optimization of fuzzy cognitive maps,” Neurocomputing, vol. 232, pp. 58–68, 2017, doi: 10.1016/j.neucom.2016.10.068.

Z. Yang and J. Liu, “Learning of fuzzy cognitive maps using a niching-based multi-modal multi-agent genetic algorithm,” Appl. Soft Comput. J., vol. 74, pp. 356–367, 2019, doi: 10.1016/j.asoc.2018.10.038.

J. L. Salmeron, T. Mansouri, M. R. S. Moghadam, and A. Mardani, “Learning Fuzzy Cognitive Maps with modified asexual reproduction optimisation algorithm,” Knowledge-Based Syst., vol. 163, pp. 723–735, 2019, doi: 10.1016/j.knosys.2018.09.034.

G. Feng, W. Lu, W. Pedrycz, J. Yang, and X. Liu, “The Learning of Fuzzy Cognitive Maps With Noisy Data : A Rapid and Robust Learning Method With Maximum Entropy,” IEEE Trans. Cybern., vol. PP, pp. 1–13, 2019, doi: 10.1109/TCYB.2019.2933438.

F. Vanhoenshoven, G. Nápoles, W. Froelich, L. Salmeron, and K. Vanhoof, “pseudoinverse learning of fuzzy cognitive maps,” Appl. Soft Comput. J., p. 106461, 2020, doi: 10.1016/j.asoc.2020.106461.

W. Stach, L. Kurgan, and W. Pedrycz, “A divide and conquer method for learning large Fuzzy Cognitive Maps,” Fuzzy Sets Syst., vol. 161, no. 19, pp. 2515–2532, 2010, doi: 10.1016/j.fss.2010.04.008.

A. Kannappan, A. Tamilarasi, and E. I. Papageorgiou, “performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder,” Expert Syst. Appl., vol. 38, no. 3, pp. 1282–1292, 2011, doi: 10.1016/j.eswa.2010.06.069.

J. L. Salmeron et al., “Learning fuzzy grey cognitive maps using nonlinear Hebbian-based approach,” Int. J. Approx. Reason., vol. 53, no. 1, pp. 54–65, 2012, doi: 10.1016/j.ijar.2011.09.006.

P. Oikonomou and E. I. Papageorgious, “particle Swarm optimization approach for fuzzy cognitive maps applied to autism classification,” in IFIP international conference on Artificial Intelligence Application and Innovations, 2013, pp. 516–526.

Abstract views: 140 times
Download PDF: 91 times
How to Cite
Jiya, E., Georgina, O., & O., A. (2023). A Review of Fuzzy Cognitive Maps Extensions and Learning. Journal of Information Systems and Informatics, 5(1), 300-323. https://doi.org/10.51519/journalisi.v5i1.447