Implementation of Fuzzy C-Means and Topsis in College Rankings

  • Joko Purnomo Sriwijaya University, Indonesia
  • Sukemi Sukemi Sriwijaya University, Indonesia
  • Parwito Parwito Universitas Ratu Samban, Indonesia
  • Ermatita Ermatita Universitas Sriwijaya, Indonesia
Keywords: Ranking, Higher Education, Clustering, Decision making

Abstract

Prior to now, the ranking of higher education institutions, particularly those at the Regional II Palembang Higher Education Service Institution, was based on one component of the work unit's criteria. This makes the university ranking results superior on one criterion but inferior on another. The number of instructors and the number of students at 100 universities in the South Sumatra region were split into two groups based on the outcome of the fuzzy c means algorithm grouping and regional criteria and calculated based on the resulting mean value. The grouping results using a topsis algorithm decision-making system with a weight determined by the number of lecturers with functional positions, college accreditation, number of certified lecturers, and percentage level of higher education database reports are used as a reference to rank universities. Based on the mean value of the fuzzy c means algorithm and the grouping results, seven colleges were chosen. Using the topsis method's way of making decisions, the final score for the highest-ranked college is 0.850.

Downloads

Download data is not yet available.

References

Tan, P. N., Steinbach, M., & KUMAR, V. 2006. Introduction to Data Mining. Boston: Pearson Education

Jindal, K., Sharma, M., & Sharma, DR. B. K. Data Mining to support Decision Process in Decision Support System. International Journal of Emerging Technology dan Advanced Engineering. Volume 4, Special Issue 1, 2014

Sahu, H., Sharma, S. & Gondhalakar, S. A Brief Overview on Data Mining Survey. International Journal of Computer Technology dan Electronics Engineering (IJCTEE) Volume 1, Issue 3. 2012

Ristyawan, A. and Sunyoto, A. (2015) ‘Pemanfaatan Algoritma FCM Dalam

Pengelompokan Kinerja Akademik Mahasiswa’, pp. 9–10

Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms.

Hastuti, A. B. et al. (2013) ‘Implementasi Metode Fuzzy C-Means Dan Topsis Dalam Membangun Sistem Pendukung Keputusan (Studi Kasus : Penentuan Jurusan Di Sma Negeri 1 Wonosari )’, 14(2).

Fitriatien, S. R. (2016) ‘Sistem Pendukung Keputusan Mahasiswa’, in, pp. 1009–1024.

Giovan Meidy Susanto (2020) “Sistem Referensi Pemilihan Smartphone Android Dengan Metode Fuzzy C-Means dan TOPSIS”. Resti Vol. 4 No. 6 (2020) 1092 – 1101

Risma Rustiyan R (2018) “Penerapan Algoritma Fuzzy C Meansuntuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi”. Jurnal Teknologi Informasi dan Ilmu Komputer, Vol. 5, No. 2, Mei 2018, hlm. 171-176.

Nova Agustina (2018).” Perbandingan Algoritma K-Means Dengan Algoritma Fuzzy C-Means Untuk ClusteringTingkat Kedisiplinan Kinerja Karyawan”. Jurnal Resti

Gunawan Wibisono (2019) “Penerapan Metode Topsis Dalam Penentuan Dosen Terbaik”. ILKOM Jurnal Ilmiah Volume 11 Nomor 2 Agustus 2019

Published
2022-12-03
Abstract views: 210 times
Download PDF: 182 times
How to Cite
Purnomo, J., Sukemi, S., Parwito, P., & Ermatita, E. (2022). Implementation of Fuzzy C-Means and Topsis in College Rankings. Journal of Information Systems and Informatics, 4(4), 1094-1111. https://doi.org/10.51519/journalisi.v4i4.409