Analysis of Using Google Maps Data to Measure the Presence or Accessibility of Urban Facilities for BPS - Statistics Indonesia Classification of Urban and Rural Villages

  • Benny Firmansyah Institut Teknologi Bandung, Indonesia
  • Widya Sri Wahyuni BPS - Statistics of Bukittinggi Municipality, Indonesia
Keywords: Classification of Villages, Urban Facilities, Google Maps, Web Scraping

Abstract

The BPS - Statistics Indonesia classifies villages into urban villages and rural villages to organize statistics. The classification of village areas into urban or rural status is intended to form a stratum used in survey sampling techniques. With this status, it is hoped that the sample taken can represent the entire population well. The BPS - Statistics Indonesia establishes criteria for classifying a village into an urban village. The 2020 urban village criteria use three indicators as its measure, namely: population density per km2, percentage of agricultural families, and the presence or access of urban facilities. In general, the data used in calculating the classification of urban and rural villages in 2020 uses data from the 2019 Village Potential (Podes) survey. This study utilizes data on urban facilities such as schools, markets, shops, and hospitals on the google maps website to calculate the score of indicators of the existence or access of urban facilities. This study used a web scraping method to obtain data on these urban facilities from the google maps website. This study selected eight villages in the Lubuk Sikaping District, Pasaman Regency, West Sumatra Province, as a case study. The results showed that four villages with great potential were classified into urban villages, and three villages with great potential were classified into rural villages.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik, Peraturan Kepala Badan Pusat Statistik Nomor 120 Tahun 2020 Tentang Klasifikasi Desa Perkotaan dan Perdesaan di Indonesia 2020 Buku 1 Sumatera. Badan Pusat Statistik, 2020.

S. Pascasarjana, “Kajian penentuan klasifikasi desa di indonesia shafa rosea surbakti,” 2015.

C. Muehlethaler dan R. Albert, “Collecting data on textiles from the internet using web crawling and web scraping tools,” Forensic Sci. Int., vol. 322, hal. 110753, 2021, doi: 10.1016/j.forsciint.2021.110753.

W. Srimulyani, N. Nurtia, M. Faris, N. F. Deli, dan S. Pramana, “Profil Tingkat Okupansi Hotel Di Ntb Selama Pandemi Covid-19 Dengan Menggunakan Big Data,” Semin. Nas. Off. Stat., vol. 2020, no. 1, hal. 273–280, 2021, doi: 10.34123/semnasoffstat.v2020i1.503.

S. Satriajati, S. B. Panuntun, dan S. Pramana, “Implementasi Web Scraping Dalam Pengumpulan Berita Kriminal Pada Masa Pandemi Covid-19,” Semin. Nas. Off. Stat., vol. 2020, no. 1, hal. 300–308, 2021, doi: 10.34123/semnasoffstat.v2020i1.578.

C. F. Annisa dan S. Pramana, “Kajian Pemanfaatan Data Google Maps dalam Official Sstatistics (Studi Kasus : Usaha Sektor Penyedia Makan Minum di Pulau Jawa dan Bali),” Semin. Nas. Off. Stat. 2020, vol. 2020, no. 1, hal. 328–337, 2020.

A. D. Churi, “Google Map Traffic Data Scraping and Mining,” no. 04, hal. 891–895, 2021.

T. Yoshida, Y. Yamagata, dan D. Murakami, “Energy demand estimation using quasi-real-time people activity data,” Energy Procedia, vol. 158, hal. 4172–4177, 2019, doi: 10.1016/j.egypro.2019.01.813.

S. Avetisyan, “Web Scraping and Geocoding : Some Stylized Facts About Regions of The Republic of Armenia Sergey Avetisyan To cite this version : HAL Id : hal-02015746 Web Scraping and Geocoding : Some Stylized Facts About Regions of The Republic of Armenia ∗ List of Figures,” 2019.

E. Uzun, “A Novel Web Scraping Approach Using the Additional Information Obtained from Web Pages,” IEEE Access, vol. 8, hal. 61726–61740, 2020, doi: 10.1109/ACCESS.2020.2984503.

T. Karthikeyan, K. Sekaran, D. Ranjith, V. Vinoth kumar, dan J. M. Balajee, “Personalized content extraction and text classification using effective web scraping techniques,” Int. J. Web Portals, vol. 11, no. 2, hal. 41–52, 2019, doi: 10.4018/IJWP.2019070103.

R. Diouf, E. N. Sarr, O. Sall, B. Birregah, M. Bousso, dan S. N. Mbaye, “Web Scraping: State-of-the-Art and Areas of Application,” Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, hal. 6040–6042, 2019, doi: 10.1109/BigData47090.2019.9005594.

S. Sirisuriya, “A Comparative Study on Web Scraping,” 8th Int. Res. Conf. KDU, no. November, hal. 135–140, 2015.

R. Diouf, U. De Thies, dan U. Michel, “Web Scraping : State-of-the-Art and Areas of Application,” hal. 6040–6042, 2019.

Published
2022-11-14
Abstract views: 379 times
Download PDF: 210 times
How to Cite
Firmansyah, B., & Wahyuni, W. (2022). Analysis of Using Google Maps Data to Measure the Presence or Accessibility of Urban Facilities for BPS - Statistics Indonesia Classification of Urban and Rural Villages. Journal of Information Systems and Informatics, 4(4), 823-832. https://doi.org/10.51519/journalisi.v4i4.337