Estimated Economic Growth Rate Based on Efek Decrease in PPKM Level Using Support Vector Regression Method

  • Daniel Setyo Cahyo Utomo Universitas Kristen Satya Wacana
  • Adi Nugroho Universitas Kristen Satya Wacana
Keywords: Pertumbuhan Ekonomi, PPKM, SVR, Polynomial, MAPE

Abstract

Economic growth is a change in economic conditions towards a better level. An increase in the value of income and production will affect the condition of a country. It can be known that the impact of Covid-19 is enough to affect economic conditions in Indonesia. Economic conditions in Indonesia are also affected by the PPKM program from the government. The bill of decreasing the PPKM level that is applied is considered to provide an increase in the economy towards normal and better. The purpose of this study is to provide predictions and analysis of the value of future economic growth. The method used is SVR (Support Vector Regression). This method is processed using a Polynomial kernel  and using MAPE (Mean Absolute Percentage Error) error accuracy. Based on research that has been carried out, the results of the value of each  economic nit in  the fourth quarter of  2021 and the first to fourth quarters of 2022 with a MAPE value of 3.6% which is included in the very good category. In this study, an analysis was also obtained that there will be an economic increase of 1.14% along with a decrease in the PPKM level.

Downloads

Download data is not yet available.

References

I. M. Jaafar and A. Sahari, “Prediksi Tingkat Pertumbuhan Ekonomi Provinsi Sulawesi,” JIMT (Jurnal Ilm. Mat. dan Ter., vol. 16, pp. 126–134, 2019.

N. Hendajany and R. Wati, “Prediksi indikator makro ekonomi Indonesia dengan model vector autoregressive periode 2019-2023,” J. Ekon. dan Bisnis, vol. 23, no. 2, pp. 189–202, 2020, doi: 10.24914/jeb.v23i1.2878.

D. Y. Dalimunthe, “Analisis Peramalan Data Produk Domestik Regional Bruto ( PDRB ) sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung,” Integr. J. Bus. Econ., vol. 1, no. 1, pp. 19–27, 2017.

N. P. N. Hendayanti, I. K. P. Suniantara, and M. Nurhidayati, “Penerapan Support Vector Regression (Svr) Dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik Ke Bali,” J. Varian, vol. 3, no. 1, pp. 43–50, 2019, doi: 10.30812/varian.v3i1.506.

H. A. Parhusip, “Study on COVID-19 in the World and Indonesia Using Regression Model of SVM, Bayesian Ridge and Gaussian,” J. Ilm. Sains, vol. 20, no. 2, p. 49, 2020, doi: 10.35799/jis.20.2.2020.28256.

M. P. Raharyani, R. R. M. Putri, and B. D. Setiawan, “Implementasi Algoritme Support Vector Regression Pada Prediksi Jumlah Pengunjung Pariwisata,” J. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 4, pp. 1501–1509, 2018.

D. I. Purnama et al., “TRANSPORTASI UDARA DI SULAWESI TENGAH MENGGUNAKAN SUPPORT VECTOR REGRESSION ( SVR ),” vol. 17, pp. 109–117, 2020.

N. N. Wijayaningrum, Vivi Nur Putriwijaya, “Support Vector Regression Untuk Memprediksi Jumlah Kunjungan Wisatawan Mancanegara di Pulau Bali,” Mach. Learn. Methods Appl. to Brain Disord., vol. 11, pp. 123–140, 2019.

Amanda Risky, Hasbi Yasin, and Alan Prahutama, " ANALISIS SUPPORT VECTOR REGRESSION (SVR) DALAM MEMPREDIKSI KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT", vol. 07, no. 1, pp. 53–60, 2019.

R. E. Cahyono, J. P. Sugiono, and S. Tjandra, “Analisis Kinerja Metode Support Vector Regression (SVR) dalam Memprediksi Indeks Harga Konsumen,” JTIM J. Teknol. Inf. dan Multimed., vol. 1, no. 2, pp. 106–116, 2019, doi: 10.35746/jtim.v1i2.22

H. C. S. Ningrum, “Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII,” Stat. UII, 2018.

Muzakir, Ari, & Usman Ependi. "Model for Identification and Prediction of Leaf Patterns: Preliminary Study for Improvement." Scientific Journal of Informatics [Online], 8.2 (2021): 244-250. Web. 8 May. 2022

“Badan Pusat Statistik.” https://www.bps.go.id/ (accessed Nov. 17, 2021).

Published
2022-06-03
Abstract views: 88 times
Download PDF: 45 times
How to Cite
Utomo, D., & Nugroho, A. (2022). Estimated Economic Growth Rate Based on Efek Decrease in PPKM Level Using Support Vector Regression Method. Journal of Information Systems and Informatics, 4(2), 233-251. https://doi.org/10.51519/journalisi.v4i2.246