Bibliometric Analysis of Cybersecurity Research Trends in Bangladeshi Educational Institutions (2020-2025)

  • Khadija Sharmin Begum Rokeya University, Bangladesh
Keywords: Cybersecurity, Bibliometric Analysis, Research Trends, Bangladesh, Network Security

Abstract

This study provides a bibliometric analysis of cybersecurity research in Bangladeshi educational institutions from 2020 to mid-2025. Using data from the Scopus database and tools like R and VOSviewer, the results show a steady increase in research output, from 23 publications in 2020 to 77 in 2024, with projections for continued growth in 2025. Key research areas include network security, machine learning, deep learning, and blockchain technologies. Rajshahi University of Engineering and Technology has been a leading institution, with Md. Alamgir Hossain (State University of Bangladesh) being a prominent contributor, publishing 15 articles and accumulating 358 citations. International collaborations have enhanced Bangladesh's global standing in cybersecurity. These findings highlight Bangladesh’s increasing role in cybersecurity research, with implications for addressing local challenges and strengthening national cybersecurity resilience.

Downloads

Download data is not yet available.

References

C. Y. Chen, W. Quan, N. Cheng, S. Yu, J. H. Lee, G. M. Perez, … S. Shieh, “IEEE Access special section editorial: Artificial intelligence in cybersecurity,” IEEE Access, vol. 8, pp. 163329 163333, 2020.

T. H. Chowdhury, N. Parvez, S. S. Urmi, and K. A. Taher, “Cybersecurity Challenges and Policy Options for Bangladesh,” in 2021 Int. Conf. on Information and Communication Technology for Sustainable Development (ICICT4SD), Feb. 2021, pp. 472 476.

M. R. Uddin, “The National Cybersecurity Strategy of Bangladesh: A Critical Analysis,” J. Int. Affairs, vol. 21, no. 1, 2017.

M. M. M. Rahaman, “Recent advancement of cyber security: Challenges and future trends in Bangladesh,” Saudi J. Eng. Technol., vol. 7, no. 6, pp. 278 289, 2022.

A. Al Mamun, J. B. Ibrahim, and S. M. Mostofa, “Cyber security awareness in Bangladesh: an overview of challenges and strategies,” Int. J. Comp. Sci. Informat. Technol. Res., vol. 9, no. 1, pp. 88 94, 2021.

M. Tasnim, M. Tasnim, S. Laila, T. Tabassum, and S. Al Haque, “Determining cybersecurity awareness and human cyber behaviour in Bangladeshi women: Addressing factors, risks and overcoming knowledge disparities,” Ph.D. dissertation, BRAC Univ., 2025.

A. S. Sikder, “Cybersecurity Framework for Ensuring Confidentiality, Integrity, and Availability of University Management Systems in Bangladesh,” Int. J. Imminent Sci. Technol., vol. 1, no. 1, pp. 17 39, Nov. 2023. DOI: 10.70774/IJIST.V1I1.4

R. U. Azad, S. Tasmim, and M. Atikuzzaman, “Investigating students’ awareness of online privacy and cybersecurity: an empirical study with effective cybersecurity training framework,” Glob. Knowl. Mem. Commun., 2025. DOI: 10.1108/gkmc 05 2024 0319

A. S. Sikder and M. R. Islam, “Enhancing Cyber Resilience within Bangladesh’s Legal Framework: Evaluating Preparedness and Mitigation Strategies against Technologically Driven Threats,” Int. J. Imminent Sci. Technol., vol. 1, no. 1, pp. 40 57, 2023.

D. P. Khurana, “Mapping the Cybersecurity Research: A Comprehensive Bibliometric Analysis,” SSRN, 2024.

S. Pradip, K. Sarker, and R. Z. Khan, “Cybersecurity Considerations for Smart Bangladesh: Challenges and Solutions,” Asian J. Res. Comput. Sci., vol. 17, no. 6, pp. 145 156, Apr. 2024. DOI: 10.9734/AJRCOS/2024/V17I6464

M. Best, L. Krumov, and I. C. Bacivarov, “Cyber Security in Banking Sector,” Int. J. Inf. Secur. Cybercrime, vol. 8, no. 2, Dec. 2019.

O. Ellegaard and J. A. Wallin, “The bibliometric analysis of scholarly production: How great is the impact?,” Scientometrics, vol. 105, no. 3, pp. 1809 1831, Dec. 2015. DOI: 10.1007/S11192 015 1645 Z

I. Passas, “Bibliometric Analysis: The Main Steps,” Encyclopedia, vol. 4, no. 2, pp. 1014 1025, Jun. 2024. DOI: 10.3390/ENCYCLOPEDIA4020065

N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J. Bus. Res., vol. 133, pp. 285 296, Sep. 2021. DOI: 10.1016/J.JBUSRES.2021.04.070

P. Ahmad, J. A. Asif, M. K. Alam, and J. Slots, “A bibliometric analysis of Periodontology 2000,” Periodontol. 2000, vol. 82, no. 1, pp. 286 297, Feb. 2020. DOI: 10.1111/PRD.12328

J. M. Merigó and J. B. Yang, “A bibliometric analysis of operations research and management science,” Omega, vol. 27, no. 1, pp. 71 100, 2017. DOI: 10.1016/j.omega.2016.12.004 IDEAS/RePEc+1

S. Büyükkidik, “A Bibliometric Analysis: A Tutorial for the Bibliometrix Package in R Using IRT Literature,” J. Meas. Eval. Educ. Psychol., vol. 13, no. 3, pp. 164 193, Sep. 2022. DOI: 10.21031/EPOD.1069307

K. Ragazou, I. Passas, A. Garefalakis, E. Galariotis, and C. Zopounidis, “Big Data Analytics Applications in Information Management Driving Operational Efficiencies and Decision Making: Mapping the Field of Knowledge with Bibliometric Analysis Using R,” Big Data Cogn. Comput., vol. 7, no. 1, p. 13, Jan. 2023. DOI: 10.3390/BDCC7010013

Y. Gao et al., “Global trends and future prospects of e waste research: a bibliometric analysis,” Environ. Sci. Pollut. Res., vol. 26, no. 17, pp. 17809 17820, Jun. 2019. DOI: 10.1007/S11356 019 05071 8

I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng, “Cybersecurity data science: an overview from machine learning perspective,” J. Big Data, vol. 7, no. 1, pp. 1 29, Dec. 2020. DOI: 10.1186/S40537 020 00318 5

I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, “IntruDTree: A Machine Learning Based Cyber Security Intrusion Detection Model,” Symmetry, vol. 12, no. 5, p. 754, May 2020. DOI: 10.3390/SYM12050754

I. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami, “Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions,” Mob. Netw. Appl., vol. 28, no. 1, pp. 296 312, Feb. 2023. DOI: 10.1007/S11036 022 01937 3

R. A. Disha and S. Waheed, “Performance analysis of machine learning models for intrusion detection system using Gini Impurity based Weighted Random Forest (GIWRF) feature selection technique,” Cybersecurity, vol. 5, no. 1, pp. 1 22, Dec. 2022. DOI: 10.1186/S42400 021 00103 8

S. M. A. A. Abir, A. Anwar, J. Choi, and A. S. M. Kayes, “IoT enabled smart energy grid: Applications and challenges,” IEEE Access, vol. 9, pp. 50961 50981, 2021. DOI: 10.1109/ACCESS.2021.3067331

M. A. Talukder et al., “A dependable hybrid machine learning model for network intrusion detection,” J. Inf. Secur. Appl., vol. 72, p. 103405, Feb. 2023. DOI: 10.1016/J.JISA.2022.103405

I. H. Sarker, “Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective,” SN Comput. Sci., vol. 2, no. 3, pp. 1 16, May 2021. DOI: 10.1007/S42979 021 00535 6

A. Rahman et al., “SmartBlock SDN: An Optimized Blockchain SDN Framework for Resource Management in IoT,” IEEE Access, vol. 9, pp. 28361 28376, 2021. DOI: 10.1109/ACCESS.2021.3058244

N. Islam, F. Farhin, I. Sultana, M. S. Kaiser, M. Mahmud, … G. H. Cho, “Towards machine learning based intrusion detection in IoT networks,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1801 1821, 2021.

M. N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F. M. Bui, and S. M. Ibrahim, “Federated Machine Learning for Detection of Skin Diseases and Enhancement of Internet of Medical Things (IoMT) Security,” IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 835 841, Feb. 2023. DOI: 10.1109/JBHI.2022.3149288

Published
2025-09-21
Abstract views: 102 times
Download PDF: 38 times
How to Cite
Sharmin, K. (2025). Bibliometric Analysis of Cybersecurity Research Trends in Bangladeshi Educational Institutions (2020-2025). Journal of Information Systems and Informatics, 7(3), 2076-2099. https://doi.org/10.51519/journalisi.v7i3.1154
Section
Articles