A Data-Driven Framework for Optimizing Propranolol Dosage Using Support Vector Regression and Reinforcement Learning

  • Felix Anayo Njoku Topfaith University, Nigeria
  • Sunday Olajide Awofisayo University of Uyo, Nigeria
  • Frank Edughom Ekpar Rivers State University, Nigeria
  • Simeon Ozuomba University of Uyo, Nigeria
Keywords: Propranolol, Dosage Optimization, Support Vector Regression, Reinforcement Learning, Personalized Medicine.

Abstract

The accurate prediction and adjustment of drug dosages requires precision to maximize therapeutic benefits while minimizing harm. This research attempts to model a hybrid machine learning framework combining Support Vector Regression (SVR) and Reinforcement Learning (RL) for individualized Propranolol dosage optimization using patient-specific clinical, enzymatic, and lifestyle data. A retrospective dataset comprising patient file, lifestyle indicators, and enzyme profile was used to train an SVR model for initial dosage prediction. Reinforcement Learning was subsequently applied to refine predictions through simulated feedback loops. Model performance was assessed using Mean Squared Error (MSE), R-squared (R²), and F1-score. Statistical comparisons between SVR predictions, RL-refined dosages, and physician-prescribed doses were performed using paired t-tests and one-way ANOVA. The SVR model achieved high predictive accuracy (MSE = 0.3554; R² = 0.9835), indicating its suitability for dosage estimation. The RL-refined model demonstrated a slight decrease in accuracy (MSE = 0.9928; R² = 0.9539). Statistical tests showed no significant improvement with RL (paired t-test: t = -1.1132, p = 0.2672; ANOVA: F = 0.0165, p = 0.9836). Mean predicted dosages across SVR, RL, and physician prescriptions were closely aligned (24.85 mg, 24.83 mg, and 24.93 mg, respectively). This study demonstrates that even standalone SVR may yield Propranolol dosage estimates with high accuracy, highlighting its prospective usefulness in clinical settings as a direct yet reliable tool for use in customized healthcare. While RL does offer some level of flexibility, the statistical value of improvements made was negligible, making RL beneficial but not necessarily critical. The proposed model shows that AI systems can aid in formulating evidence-based clinical judgments for dosing medications.

Downloads

Download data is not yet available.

References

Y. Daali, “Personalized Medicine: Pharmacokinetics,” J. Pers. Med., vol. 12, no. 10, p. 1660, Oct. 2022, doi: 10.3390/jpm12101660.

X. Yang, “The applications of artificial intelligence in personalized medicine,” Appl. Comput. Eng., vol. 71, no. 1, pp. 47–51, Aug. 2024, doi: 10.54254/2755-2721/71/20241625.

G. Magliocco, F. Rodieux, J. Desmeules, C. F. Samer, and Y. Daali, “Toward precision medicine in pediatric population using cytochrome P450 phenotyping approaches and physiologically based pharmacokinetic modeling,” Pediatr. Res., vol. 87, no. 3, pp. 441–449, Feb. 2020, doi: 10.1038/s41390-019-0609-z.

A. A. Verma, W. Khuu, M. Tadrous, T. Gomes, and M. M. Mamdani, “Fixed-dose combination antihypertensive medications, adherence, and clinical outcomes: A population-based retrospective cohort study,” PLOS Med., vol. 15, no. 6, p. e1002584, Jun. 2018, doi: 10.1371/journal.pmed.1002584.

O. A. Fatunde and S.-A. Brown, “The Role of CYP450 Drug Metabolism in Precision Cardio-Oncology,” Int. J. Mol. Sci., vol. 21, no. 2, p. 604, Jan. 2020, doi: 10.3390/ijms21020604.

M. Walton and J. B. Wagner, “Pediatric Beta Blocker Therapy: A Comprehensive Review of Development and Genetic Variation to Guide Precision-Based Therapy in Children, Adolescents, and Young Adults,” Genes, vol. 15, no. 3, p. 379, Mar. 2024, doi: 10.3390/genes15030379.

O. D. S. Belo, G. A. H. Simbolon, S. Hadisaputra, C. B. Susilo, and J. D. Ayu, “The Role of Lifestyle Modifications in the Prevention and Management of Chronic Diseases,” Glob. Int. J. Innov. Res., vol. 2, no. 1, pp. 432–438, Mar. 2024, doi: 10.59613/global.v2i1.75.

S. J. Gardiner and E. J. Begg, “Pharmacogenetics, Drug-Metabolizing Enzymes, and Clinical Practice,” Pharmacol. Rev., vol. 58, no. 3, pp. 521–590, Sep. 2006, doi: 10.1124/pr.58.3.6.

M. Jovanović, N. Tomić, S. Cvijić, D. Stojanović, S. Ibrić, and P. Uskoković, “Mucoadhesive Gelatin Buccal Films with Propranolol Hydrochloride: Evaluation of Mechanical, Mucoadhesive, and Biopharmaceutical Properties,” Pharmaceutics, vol. 13, no. 2, p. 273, Feb. 2021, doi: 10.3390/pharmaceutics13020273.

M. Flockhart, L. C. Nilsson, S. Tais, B. Ekblom, W. Apró, and F. J. Larsen, “Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers,” Cell Metab., vol. 33, no. 5, pp. 957-970.e6, May 2021, doi: 10.1016/j.cmet.2021.02.017.

I.K. Minichmayr, E. Dreesen, M. Centanni, Z. Wang, Y. Hoffert, L.E. Friberg , S.G. Wicha, “Model-informed precision dosing: State of the art and future perspectives,” Adv. Drug Deliv. Rev., vol. 215, p. 115421, Dec. 2024, doi: 10.1016/j.addr.2024.115421.

R. J. Marrero, A. Fumero, A. De Miguel, and W. Peñate, “Psychological factors involved in psychopharmacological medication adherence in mental health patients: A systematic review,” Patient Educ. Couns., vol. 103, no. 10, pp. 2116–2131, Oct. 2020, doi: 10.1016/j.pec.2020.04.030.

R. J. Tyson, C. C. Park, J. R. Powell, J. H. Patterson, D. Weiner, P. B. Watkins and D. Gonzalez, “Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables,” Front. Pharmacol., vol. 11, p. 420, Apr. 2020, doi: 10.3389/fphar.2020.00420.

M. Berezowska, I. S. Hayden, A. M. Brandon, A. Zats, M. Patel, S. Barnett, K. Ogungbenro, G. J. Veal, A. Taylor, and J. Suthar, “Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice,” Br. J. Clin. Pharmacol., p. bcp.16335, Nov. 2024, doi: 10.1111/bcp.16335.

N. S. Tesfamariam, A. Aboelezz, and S. H. Mahmoud, “The Impact of Augmented Renal Clearance on Vancomycin Pharmacokinetics and Pharmacodynamics in Critically Ill Patients,” J. Clin. Med., vol. 13, no. 8, p. 2317, Apr. 2024, doi: 10.3390/jcm13082317.

T. M. Powell-Wiley, P. Poirier, L. E. Burke, J. Després, P. G. Larsen, C. J. Lavie, S. A. Lear, C. E. Ndumele, I. J. Neeland, P. Sanders, M. St-Onge, “Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association,” Circulation, vol. 143, no. 21, May 2021, doi: 10.1161/CIR.0000000000000973.

E. Niederberger and M. J. Parnham, “The Impact of Diet and Exercise on Drug Responses,” Int. J. Mol. Sci., vol. 22, no. 14, p. 7692, Jul. 2021, doi: 10.3390/ijms22147692.

I. R. Edwards and J. K. Aronson, “Adverse drug reactions: definitions, diagnosis, and management,” The Lancet, vol. 356, no. 9237, pp. 1255–1259, Oct. 2000, doi: 10.1016/S0140-6736(00)02799-9.

P. Preeti, S. Sambhakar, R. Saharan, S. Narwal, R. Malik, V. Gahlot, A. Khalid, A. Najmi, K. Zoghebi, M. A. Halawi, M. Albratty, and S. Mohan, “Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review,” Saudi Pharm. J., vol. 31, no. 12, p. 101870, Dec. 2023, doi: 10.1016/j.jsps.2023.101870.

A. Kambayashi and Y. Shirasaka, “Food effects on gastrointestinal physiology and drug absorption,” Drug Metab. Pharmacokinet., vol. 48, p. 100488, Feb. 2023, doi: 10.1016/j.dmpk.2022.100488.

V. V. Shumyantseva, A. V. Kuzikov, R. A. Masamrekh, T. V. Bulko, and A. I. Archakov, “From electrochemistry to enzyme kinetics of cytochrome P450,” Biosens. Bioelectron., vol. 121, pp. 192–204, Dec. 2018, doi: 10.1016/j.bios.2018.08.040.

B. D. Fleming, D. L. Johnson, A. M. Bond, and L. L. Martin, “Recent progress in cytochrome P450 enzyme electrochemistry,” Expert Opin. Drug Metab. Toxicol., vol. 2, no. 4, pp. 581–589, Aug. 2006, doi: 10.1517/17425255.2.4.581.

J. J.-L. Low, B. J.-W. Tan, L.-X. Yi, Z.-D. Zhou, and E.-K. Tan, “Genetic susceptibility to caffeine intake and metabolism: a systematic review,” J. Transl. Med., vol. 22, no. 1, p. 961, Oct. 2024, doi: 10.1186/s12967-024-05737-z.

A. van der Plas, S. Pouly, N. Blanc, C. Haziza, G. de La Bourdonnaye, B. Titz, J. Hoeng, N. V. Ivanov, B. Taranu, and A. Heremans, “Impact of switching to a heat-not-burn tobacco product on CYP1A2 activity,” Toxicol. Rep., vol. 7, pp. 1480–1486, 2020, doi: 10.1016/j.toxrep.2020.10.017.

J. Guo, X. Zhu, S. Badawy, A. Ihsan, Z. Liu, C. Xie, and X. Wang, “Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2,” Curr. Drug Metab., vol. 22, no. 1, pp. 40–49, Mar. 2021, doi: 10.2174/1389200221999210101233135.

K. Huang, Y. Shi, N. Chu, L. Que, Y. Ding, Z. Qian, W. Qin, X. Gu, J. Wang, Z. Zhang, J. Xu, and Q. He, “The effect of food on the pharmacokinetics of WXFL10203614, a potential selective JAK1 inhibitor, in healthy Chinese subjects,” Front. Pharmacol., vol. 13, p. 1066895, Nov. 2022, doi: 10.3389/fphar.2022.1066895.

X.-Q. Tan, “The role of healthy lifestyles in preventing chronic disease among adults,” Am. J. Med. Sci., vol. 364, no. 3, pp. 309–315, Sep. 2022, doi: 10.1016/j.amjms.2022.04.007.

S. Awofisayo, A. Akpabio, E. Olorunsola, and M. Arhewoh, “Lifestyle Biopharmaceutics and Mechanistic Basis of Drug Clinical Outcomes: A Review,” J. Adv. Pharm. Res., vol. 0, no. 0, pp. 0–0, Apr. 2024, doi: 10.21608/aprh.2024.257304.1245.

C. Johannessen Landmark, S. Eyal, M. L. Burns, V. Franco, and S. I. Johannessen, “Pharmacological aspects of antiseizure medications: From basic mechanisms to clinical considerations of drug interactions and use of therapeutic drug monitoring,” Epileptic. Disord., vol. 25, no. 4, pp. 454–471, Aug. 2023, doi: 10.1002/epd2.20069.

W. Sadee, D. Wang, K. Hartmann, and A. E. Toland, “Pharmacogenomics: Driving Personalized Medicine,” Pharmacol. Rev., vol. 75, no. 4, pp. 789–814, Jul. 2023, doi: 10.1124/pharmrev.122.000810.

N. Holford, “Holford NHG and Sheiner LB ‘Understanding the Dose-Effect Relationship-Clinical Application of Pharmacokinetic-Pharmacodynamic Models’, Clin Pharmacokin 6:429–453 (1981)—The Backstory,” AAPS J., vol. 13, no. 4, pp. 662–664, Dec. 2011, doi: 10.1208/s12248-011-9306-5.

G. Shao, Z. Bao, L. D. Forsman, J. Paues, J. Werngren, K. Niward, T. Schön, J. Bruchfeld, J.-W. Alffenaar, and Y. Hu, “Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients,” Front. Pharmacol., vol. 14, p. 1022090, Mar. 2023, doi: 10.3389/fphar.2023.1022090.

A. Blasiak, J. Khong, and T. Kee, “CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence,” SLAS Technol., vol. 25, no. 2, pp. 95–105, Apr. 2020, doi: 10.1177/2472630319890316.

T. Preijers, A. E. Muller, A. Abdulla, B. C. M. De Winter, B. C. P. Koch, and S. D. T. Sassen, “Dose Individualisation of Antimicrobials from a Pharmacometric Standpoint: The Current Landscape,” Drugs, vol. 84, no. 10, pp. 1167–1178, Oct. 2024, doi: 10.1007/s40265-024-02084-7.

N. Geng, J. Su, Z. Liu, C. Ding, S. Xie, and W. Hu, “The Influence of KDR Genetic Variation on the Efficacy and Safety of Patients With Advanced NSCLC Receiving First-Line Bevacizumab Plus Chemotherapy Regimen,” Technol. Cancer Res. Treat., vol. 20, p. 15330338211019433, Jan. 2021, doi: 10.1177/15330338211019433.

P. Shah, F. Kendall, S. Khozin, R. Goosen, J. Hu, J. Laramie, M. Ringel, and N. Schork, “Artificial intelligence and machine learning in clinical development: a translational perspective,” Npj Digit. Med., vol. 2, no. 1, p. 69, Jul. 2019, doi: 10.1038/s41746-019-0148-3.

Ejike Innocent Nwankwo, Ebube Victor Emeihe, Mojeed Dayo Ajegbile, Janet Aderonke Olaboye, and Chukwudi Cosmos Maha, “AI in personalized medicine: Enhancing drug efficacy and reducing adverse effects,” Int. Med. Sci. Res. J., vol. 4, no. 8, pp. 806–833, Aug. 2024, doi: 10.51594/imsrj.v4i8.1453.

E. M. Froicu, O. M. Oniciuc, V. A. Afrăsânie, M. V. Marinca, S. Riondino, E. A. Dumitrescu, T. Alexa-Stratulat, I. Radu, L. Miron, G. Bacoanu, V. Poroch, and B. Gafton, “The Use of Artificial Intelligence in Predicting Chemotherapy-Induced Toxicities in Metastatic Colorectal Cancer: A Data-Driven Approach for Personalized Oncology,” Diagnostics, vol. 14, no. 18, p. 2074, Sep. 2024, doi: 10.3390/diagnostics14182074.

Y. You, X. Lai, Y. Pan, H. Zheng, J. Vera, S. Liu, S. Deng, and L. Zhang, “Artificial intelligence in cancer target identification and drug discovery,” Signal Transduct. Target. Ther., vol. 7, no. 1, p. 156, May 2022, doi: 10.1038/s41392-022-00994-0.

Published
2025-06-24
Abstract views: 100 times
Download PDF: 29 times
How to Cite
Njoku, F., Awofisayo, S., Ekpar, F., & Ozuomba, S. (2025). A Data-Driven Framework for Optimizing Propranolol Dosage Using Support Vector Regression and Reinforcement Learning. Journal of Information Systems and Informatics, 7(2), 1130-1152. https://doi.org/10.51519/journalisi.v7i2.1075
Section
Articles