Optimization of Backpropagation (BP) Weight Values Using Particle Swarm Optimization (PSO) to Predict KIP Scholarship Recipients

  • Dika Kurnia Nanda Universitas Sriwijaya, Indonesia
  • Dian Palupi Rini Universitas Sriwijaya, Indonesia
Keywords: Backpropagation (BP), Particle Swarm Optimization (PSO), Prediction Model, Smart Indonesia Card (KIP)

Abstract

The Indonesia Smart Card (KIP) Lecture program aims to improve the quality of human resources by providing educational assistance to students from underprivileged families. However, the distribution of KIP Lecture in Palembang still faces problems, such as inaccurate targeting and lack of public understanding of this program. The selection process for scholarship recipients is not optimal, causing students who should be prioritized to be overlooked. In addition, decision-making takes a long time due to the many variables that must be considered and the lack of transparency in data processing. This research discusses the Backpropagation (BP) method for predicting KIP College scholarship recipients, which has previously been applied to the classification of educational aid recipients with high accuracies results. However, BP has disadvantages such as minimum local risk and long training time. To overcome this, the Particle Swarm Optimization (PSO) algorithm is used to optimize the weights of the BP artificial neural network. PSO is a simple but effective optimization algorithm to find optimal weights more quickly and accurately. The results of previous studies show that the combination of BP with PSO can improve prediction accuracy compared to using BP alone. Therefore, this research aims to develop a more efficient and targeted prediction model for KIP College scholarship recipients through BP optimization using PSO, so that the selection process can be carried out more quickly and accurately.

Downloads

Download data is not yet available.

References

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, Pedoman Pelaksanaan Program Indonesia Pintar Kuliah. Jakarta: Kemendikbudristek, 2022.

D. T. Yuliana dan dkk, "Penentuan penerima Kartu Indonesia Pintar KIP Kuliah dengan menggunakan metode K-Means Clustering," J. Focus Action Res. Math. (Factor M), vol. 5, no. 1, pp. 127–141, 2022, doi: 10.30762/f_m.v5i1.570.

Supriyanto dan dkk, "Penerapan JST Backpropagation untuk prediksi siswa penerima bantuan," J. STMIK Budidarma, vol. 6, no. 2, pp. 952–959, 2022.

B. I. dan D. Y. Sukma, "Pengaruh masukan dan fungsi aktivasi terhadap kecepatan pelatihan jaringan syaraf tiruan (JST) modular sebagai klasifikasi dan estimasi lokasi gangguan pada saluran distribusi bawah tanah PT. Pertamina RU II Dumai," Jom Fteknik, vol. 4, no. 1, pp. 1–8, 2017.

L. Khanady, "Prediksi harga saham dengan menggunakan JST (Jaringan Syaraf Tiruan)," J. Ilm. Inf., vol. 7, no. 1, pp. 1–4, 2019.

D. Kurniadi et al., "Prediction of courses score using Artificial Neural Network with Backpropagation algorithm," IOP Conf. Ser. Mater. Sci. Eng., vol. 1098, p. 032110, Mar. 2021, doi: 10.1088/1757-899X/1098/3/032110.

A. Pujianto et al., "Perancangan sistem pendukung keputusan untuk prediksi penerima beasiswa menggunakan metode Neural Network Backpropagation," J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, pp. 157–162, 2018.

K. F. Irnanda et al., "Optimasi Particle Swarm Optimization pada peningkatan prediksi dengan metode Backpropagation menggunakan software RapidMiner," JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 122, 2022, doi: 10.30865/jurikom.v9i1.3836.

A. Febiani et al., "Implementasi algoritma Particle Swarm Optimization (PSO) penjadwalan belajar mengajar," IKRA-ITH Inform.: J. Komput. dan Inform., vol. 8, no. 1, pp. 152–161, 2024, doi: 10.37817/ikraith-informatika.v8i1.3210.

B. R. CTI et al., "Implementasi k-means clustering pada RapidMiner untuk analisis daerah rawan kecelakaan," Semin. Nas. Riset Kuantitatif Terap., pp. 58–60, 2017.

P. Santosa dan B. Willy, Metoda Metaheuristik: Konsep dan Implementasinya, 1st ed. Surabaya: Guna Widya, 2011.

N. Lutfiyana, "Penerapan algoritma C4.5 berbasis Particle Swarm Optimization untuk prediksi hasil layanan kemudahan donasi zakat dan program," J. PILAR Nusa Mandiri, vol. 4, no. 1, pp. 103–110, 2018.

U. Rusmawan, Teknik Penulisan Tugas Akhir dan Skripsi Pemrograman. Jakarta: PT Elex Media Komputindo, 2019.

E. S. Dewi, N. Nurwati, dan R. Rahayu, "Penerapan data mining untuk prediksi penjualan produk terlaris menggunakan metode K-Nearest Neighbor," Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 639–648, 2022.

T. Tamaji, Y. A. K. Utama, dan J. Sidharta, "Jaringan Saraf Tiruan menggunakan metode Backpropagation untuk prediksi curah hujan," Telekontran: J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 10, no. 1, pp. 30–37, 2022, doi: 10.34010/telekontran.v10i1.7409.

E. A. Hak dan Z. N. Setyawan, "SIGNATURE PSO: Modified Particle Swarm Optimization dengan fuzzy signature dan implementasi pada optimalisasi kendali LQR," Multitek Indones.: J. Ilm., vol. 6223, no. 2, pp. 110–120, 2019.

S. R. Asriningtias, "Optimasi training neural network menggunakan Hybrid Adaptive Mutation," EECCIS, vol. 9, no. 1, pp. 79–84, 2017.

W. A. S. Iryani, K. N. Nurul, dan I. Hasana, "Optimasi metode Naïve Bayes menggunakan smoothing dan feature selection untuk penyakit demam berdarah dengue," J. Sci. Appl. Informatics, vol. 7, no. 3, pp. 435–440, 2024.

D. R. Anjasmara, Optimasi rute dan waktu distribusi menggunakan metode Clarke and Wright Saving Heuristic di Coca Cola Official Distributor WARINGIN, Tesis, Politeknik APP Jakarta, 2019.

I. Purba dan A. Wanto, "Prediksi jumlah nilai impor Sumatera Utara menurut negara asal menggunakan algoritma Backpropagation," Techno.Com, vol. 17, pp. 302–311, Aug. 2018, doi: 10.33633/tc.v17i3.1769.

H. Kurniawan, N. Ritha, dan D. K. N. Nikentari, "Optimasi jaringan syaraf tiruan Backpropagation dengan Particle Swarm Optimization untuk prediksi pasang surut air laut," J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 605, 2018.

I. P. Hairati, P. Deoranto, dan I. A. Dewi, "Peramalan permintaan produk keripik tempe CV Aneka Rasa dengan metode jaringan syaraf tiruan," J. Teknol. dan Manaj. Agroindustri, vol. 1, no. 1, pp. 10–21.

L. Hanum dan I. C. C. A. Caesar, "Perbandingan metode ANN-PSO dan ANN-GA dalam pemodelan komposisi pakan kambing Peranakan Etawa (PE) untuk optimasi kandungan gizi," J. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, p. 216, 2016.

D. A. R. W. dan Y. A. Rochman, "Model penjadwalan matakuliah secara otomatis berbasis algoritma Particle Swarm Optimization (PSO)," J. Rekayasa Sist. Ind., vol. 2, no. 1, pp. 22–31, 2013.

A. E. Goldenia, D. Widiayanto, dan M. M. Santoni, "Perbandingan Particle Swarm Optimization dan Nguyen Widrow pada implementasi Backpropagation untuk prediksi jumlah kasus demam berdarah dengue (studi kasus: DKI Jakarta)," Angew. Chem. Int. Ed., vol. 6, no. 11, pp. 5–48, 2022.

W. Wang dan Y. Lu, "Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model," IOP Conf. Ser. Mater. Sci. Eng., vol. 324, p. 012049, 2018.

M. C. A., R. M. Q., Kanwal S., Khan B., dan S. M. Ali, "Support vector machine and Gaussian process regression based modeling for photovoltaic power prediction," in Proc. 2018 Int. Conf. Front. Inf. Technol. (FIT), pp. 117–222, 2018.

Published
2025-03-23
Abstract views: 109 times
Download PDF: 99 times
How to Cite
Nanda, D., & Rini, D. (2025). Optimization of Backpropagation (BP) Weight Values Using Particle Swarm Optimization (PSO) to Predict KIP Scholarship Recipients. Journal of Information Systems and Informatics, 7(1), 681-697. https://doi.org/10.51519/journalisi.v7i1.1042
Section
Articles