Harnessing SVM for Sentiment Analysis: Insights from Gojek's Instagram Engagement

  • Muhammad Juan Savero Universitas Sriwijaya, Indonesia
  • Ali Ibrahim Universitas Sriwijaya, Indonesia
  • Yadi Utama Universitas Sriwijaya, Indonesia
  • Endang Lestari Universitas Sriwijaya, Indonesia
Keywords: Sentiment Analysis, Support Vector Machine, Gojek, Instagram, Marketing Strategy, Customer Satisfaction Prediction

Abstract

The development of digital technology has changed the transportation industry, including online services such as Gojek. Understanding customer sentiment is key in improving user experience and designing more effective business strategies. This research analyzes Gojek user sentiment on Instagram using Support Vector Machine (SVM). Data is obtained through web scraping, then processed through text cleaning, tokenization, common word removal, and stemming. Features were extracted using Term Frequency-Inverse Document Frequency (TF-IDF) before being classified with SVM. The results showed that the SVM model achieved 70.82% accuracy in classifying user sentiment. Most positive comments highlight the convenience and efficiency of the service, while negative comments are more related to high tariffs, application constraints, and less responsive customer service. These findings provide insights for Gojek to improve marketing strategies, optimize customer service, and adjust fare policies based on user feedback. In addition, this analysis can help in predicting real-time customer satisfaction trends through sentiment monitoring on social media. As a development step, this research recommends further exploration with deep learning and Aspect-Based Sentiment Analysis (ABSA) to improve accuracy and understand the service aspects that have the most influence on customer satisfaction.

Downloads

Download data is not yet available.

References

M. N. Margaretha dan D. H. Wibowo, "Hubungan antara kepuasan hidup dengan Fear of Missing Out (FoMO) pada remaja pengguna media sosial," Psikoislamika: J. Psikol. dan Psikol. Islam, vol. 20, no. 2, pp. 2655–5034, 2023, doi: 10.18860/psi.v20i2.23219.s.

G. Y. Pratama dan A. Suradi, "Perlindungan hukum terhadap data pribadi pengguna jasa transportasi online dari tindakan penyalahgunaan pihak penyedia jasa berdasarkan Undang-Undang Nomor 8 Tahun 1999 tentang Perlindungan Konsumen," Diponegoro Law J., vol. 5, no. 3, 2016.

P. Yuniar dan Kismiantini, "Analisis sentimen ulasan pada Gojek menggunakan metode Naive Bayes," Statistika, vol. 23, no. 2, pp. 164–175, Dec. 2023, doi: 10.29313/statistika.v23i2.2353.

Fathrizqy, P. Mahardika, A. Larasati, dan A. Muid, "The sentiment analysis of online customer review on food and beverages delivery services in the GOJEK application using K-Nearest Neighbors," in Proc. 12th Int. Conf. Ind. Eng. Oper. Manag. (IEOM), Istanbul, Turkey, Mar. 2022, pp. 167–176.

P. Heydarian, A. Bifet, dan S. Corbet, "Understanding market sentiment analysis: A survey," J. Econ. Surv., vol. 38, no. 1, pp. 1–25, 2024, doi: 10.1111/joes.12645.

B. F. Wiguna et al., "Indonesian Scientific Index (SINTA) journal-level of S3," Piksel, vol. 11, no. 2, p. 401, 2023, doi: 10.33558/piksel.

J. J. Sihombing dan R. I. Sitorus, "Implementasi algoritma Support Vector Machine untuk analisis sentimen aplikasi OLX di Playstore," J. Inform. Data Sci. (J-IDS), vol. 1, no. 2, 2022.

H. Andreansyah, "Klasifikasi sentimen positif dan negatif pada ulasan aplikasi Gojek menggunakan metode Support Vector Machine (SVM)," JURASIK, vol. 9, no. 1, pp. 329–336, 2024.

R. J. Bhuiyan et al., "Sentiment analysis of customer feedback in the banking sector: A comparative study of machine learning models," Am. J. Eng. Technol., vol. 6, no. 10, pp. 54–66, Oct. 2024, doi: 10.37547/tajet/Volume06Issue10-07.

B. A. Ardhani, N. Chamidah, dan T. Saifudin, "Sentiment analysis towards Kartu Prakerja using text mining with Support Vector Machine and Radial Basis Function Kernel," J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 2, pp. 119–128, Oct. 2021, doi: 10.20473/jisebi.7.2.119-128.

Y. Akbar dan T. Sugiharto, "Analisis sentimen pengguna Twitter di Indonesia terhadap ChatGPT menggunakan algoritma C4.5 dan Naïve Bayes," J. Sains dan Teknol., vol. 5, no. 1, pp. 115–122, 2023, doi: 10.55338/saintek.v4i3.1368.

I. Amal, "Perbandingan pelabelan otomatis dan manual untuk analisis sentimen terhadap kenaikan harga BBM Pertamina pada Twitter menggunakan algoritma Support Vector Machine," J. Inform., vol. 8, no. 3, pp. 123–130, 2023.

A. Widianto dan E. Pebriyanto, "Document similarity using Term Frequency-Inverse Document Frequency representation and cosine similarity," J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 4, no. 2, pp. 149–153, 2024.

R. E. Putra, F. Pramudita, dan D. R. Anggraini, "Sentiment analysis terhadap layanan transportasi online menggunakan metode Naïve Bayes dan Support Vector Machine," J. Teknol. dan Sist. Komput., vol. 11, no. 2, pp. 189–195, 2023, doi: 10.14710/jtsiskom.2023.189.

A. J. N. Kisma, P. Arsi, dan P. Subarkah, "Sentiment analysis regarding candidate presidential 2024 using Support Vector Machine Backpropagation based," JTAM (J. Teor. Apl. Mat.), vol. 8, no. 1, p. 96, Jan. 2024, doi: 10.31764/jtam.v8i1.17294.

V. B. Lestari dan A. Dini, "Support Vector Machine for sentiment analysis of PT. Paragon Technology and Innovation (Case study of brand Make Over and Emina product users on Female Daily Page-Beauty Review)," in Proc. Conf., 2024.

K. S. Kumar et al., "Sentiment analysis of short texts using SVMs and VSMs-based multiclass semantic classification," Appl. Artif. Intell., vol. 38, no. 1, 2024, doi: 10.1080/08839514.2024.2321555.

B. Sugara dan A. Subekti, "Penerapan Support Vector Machine (SVM) pada small dataset untuk deteksi dini gangguan autisme," J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177–182, Sep. 2019, doi: 10.33480/pilar.v15i2.649.

A. M. Yolanda dan R. T. Mulya, "Implementasi metode Support Vector Machine untuk analisis sentimen pada ulasan aplikasi Sayurbox di Google Play Store," VARIANSI: J. Stat. dan Apl. dalam Pembelajaran dan Penelitian, vol. 6, no. 2, pp. 76–83, 2024, doi: 10.35580/variansiunm258.

B. Gunawan, H. Sasty, E. Esyudha, dan P. #3, "Sistem analisis sentimen pada ulasan produk menggunakan metode Naive Bayes," JEPIN (J. Edukasi dan Penelit. Informatika), vol. 4, no. 2, pp. 17–29, 2018.

I. Juventius, T. Gurning, P. P. Adikara, dan R. S. Perdana, "Analisis sentimen dokumen Twitter menggunakan metode Naïve Bayes dengan seleksi fitur GU Metric," J. Ilm. MEA (Manajemen, Ekon. dan Akuntansi), vol. 7, no. 5, 2023.

R. M. Taufiq, D. Toresa, dan S. Handayani, "Optimasi parameter Support Vector Machine dengan Particle Swarm Optimization untuk prediksi tunggakan iuran sekolah," J. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 75–84, 2024.

M. F. Syahputra, F. M. Azizah, dan M. S. Lubis, "Optimasi parameter Support Vector Machine menggunakan algoritma genetika untuk meningkatkan prediksi pergerakan harga saham," CORE: J. Comput. Res. Educ., vol. 3, no. 1, pp. 45–55, 2022.

R. Nabilah, N. D. Arifatunisa, R. R. Fakhri, G. N. Fitriana, D. A. Firjatulloh, dan J. T. Nugraha, "Analisis kepuasan pelanggan terhadap layanan transportasi online (Grab)," in Proc. Sem. Nasional Sist. Inform. Indonesia (SESINDO), 2024.

R. S. Mongilala, J. A. F. Kalangi, dan O. F. C. Walangitan, "Kualitas pelayanan transportasi online (GrabBike) terhadap kepuasan pelanggan," J. Ilm. Administrasi Bisnis, vol. 1, no. 3, 2020.

Published
2025-03-23
Abstract views: 182 times
Download PDF: 149 times
How to Cite
Savero, M., Ibrahim, A., Utama, Y., & Lestari, E. (2025). Harnessing SVM for Sentiment Analysis: Insights from Gojek’s Instagram Engagement. Journal of Information Systems and Informatics, 7(1), 663-680. https://doi.org/10.51519/journalisi.v7i1.1041
Section
Articles