Sentiment Analysis of 'Free Lunch for Children' Policy on Social Media X Using Random Forest Algorithm

  • Anies Anies State Islamic University of North Sumatera, Indonesia
  • Muhammad Ikhsan State Islamic University of North Sumatera, Indonesia
Keywords: Sentiment Analysis, Random Forest Algorithm, Social Policy

Abstract

The concept of a welfare state emphasizes the main role of the government in providing protection and improving welfare such as health and education to its people. The free lunch program proposed by Prabowo Subianto and Gibran Rakabuming Raka aims to improve the nutritional quality of school children while driving the national economy. The public's reaction to Prabowo Subianto's work program plan, on free school lunch program and nutritional support for Indonesian students, is very diverse in perspective on X. The Random Forest algorithm proved to be quite effective in classifying public sentiment regarding the policy of “Free Lunch for Children.” With an overall accuracy of 73%, the model was able to categorize public opinion into positive, negative, and neutral categories. To improve the performance of the model, upsampling was performed to balance the classes in the dataset as well as hyperparameter tuning. After applying these techniques, the accuracy of the model increased significantly to 80%.

Downloads

Download data is not yet available.

References

M. A. P. Ginting and S. Sriani, “Developing a Web-Based Application for Palm Seedling Eligibility Using C5.0 Algorithm and CART Algorithm,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 12, no. 1, pp. 97–108, Mar. 2024, doi: 10.33558/piksel.v12i1.8810.

H. C. Morama, D. E. Ratnawati, dan I. Arwani, "Analisis sentimen berbasis aspek terhadap ulasan Hotel Tentrem Yogyakarta menggunakan algoritma Random Forest Classifier," J. Pengemb. Teknol. Inf. Ilmu Komput., vol. 6, no. 4, pp. 1702–1708, 2022.

R. I. Astuti and Suhana, “Pengaruh Kompetensi Dan Knowledge Sharing Terhadap OCB Dengan Mediasi Komitmen Organisasional (Studi Pada Pegawai Bpsdmd Provinsi Jawa Tengah,” J. Ilm. EDUNOMIKA, vol. 7, no. 1, 2023.

Amri, “Analisis Pemanfaatan Teknologi Informasi Dan Komunikasi Dalam Menunjang Terwujudnya Makassar Sebagai ‘Smart City,’” J. Komun. KAREBA, vol. 5, no. 2, 2021.

I. S. Tinendung and I. Zufria, “Pengelompokan Status Stunting Pada Anak Menggunakan Metode K-Means Clustering,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, p. 2014, Oct. 2023, doi: 10.30865/mib.v7i4.6908.

C. P. Yanti, N. W. Eva Agustini, N. L. W. Sri Rahayu Ginantra, and D. A. Putri Wulandari, “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 2, p. 756, Apr. 2023, doi: 10.30865/mib.v7i2.5900.

S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine dalam Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia,” J. Mantik Penusa, vol. 03, no. 01, 2019.

D. Agung Prabowo and Sudianto, “Analisis Sentimen Sepak Bola Indonesia pada Twitter menggunakan K-Nearest Neighbors dan Random Forest,” JSAI J. Sci. Appl. Inform., vol. 6, no. 2, pp. 217–227, Jun. 2023, doi: 10.36085/jsai.v6i2.5337.

A. Syakur, “Implementasi Metode Lexicon Base Untuk Analisis Sentimen Kebijakan Pemerintah Dalam Pencegahan Penyebaran Virus Corona Covid-19 Pada Twitter,” J. Ilm. Inform. Komput., vol. 26, no. 3, pp. 247–260, 2021, doi: 10.35760/ik.2021.v26i3.4720.

D. Sabarudin dan P. Purwadi, "Ideologi kebangsaan, identitas politik, dan ekonomi calon presiden Prabowo Subianto dalam program BEST RESULTS FAST 2024–2029," Univ. Kebangsaan Republik Indones., vol. 1, no. 1, pp. 30–43, 2023.

D. Nurwahidah, G. Dwilestari, N. D. Nuris, dan R. Narasati, "Analisis sentimen data ulasan pengguna aplikasi Google Kelas pada Google Play Store menggunakan algoritma Naïve Bayes," JATI (J. Mahasiswa Tek. Inform.), vol. 7, no. 6, pp. 3673–3678, 2023.

A. Sagita, A. Faqih, G. Dwilestari, B. Siswoyo, dan D. Pratama, "Penerapan metode Random Forest dalam menganalisis sentimen pengguna aplikasi CapCut di Google Play Store," JATI (J. Mahasiswa Tek. Inform.), vol. 7, no. 6, pp. 3307–3313, 2023.

R. Chairunnisa, “Analisis Sentimen terhadap Karyawan Dirumahkan pada Media Sosial Twitter menggunakan Fitur N-Gram dan Pembobotan Augmented TF – IDF Probability dengan K-Nearest Neighbour,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 6, no. 4, pp. 1960–1965, 2022.

D. H. Depari, Y. Widiastiwi, and M. M. Santoni, “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung,” Inform. J. Ilmu Komput., vol. 18, no. 3, p. 239, Dec. 2022, doi: 10.52958/iftk.v18i3.4694.

S. N. Sari, M. R. Faisal, D. Kartini, I. Budiman, T. H. Saragih, and M. Muliadi, “Perbandingan Ekstraksi Fitur dengan Pembobotan Supervised dan Unsupervised pada Algoritma Random Forest untuk Pemantauan Laporan Penderita COVID-19 di Twitter,” J. Komputasi, vol. 11, no. 1, pp. 33–42, Apr. 2023, doi: 10.23960/komputasi.v11i1.6650.

A. M. A. Rahim, Inggrid Yanuar Risca Pratiwi, and Muhammad Ainul Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique Dan Random Forest Clasifier,” Indones. J. Comput. Sci., vol. 12, no. 5, Nov. 2023, doi: 10.33022/ijcs.v12i5.3413.

A. Elhan, M. K. D. Hardhienata, Y. Herdiyeni, S. H. Wijaya, and J. Adisantoso, “Analisis Sentimen Pengguna Twitter terhadap Vaksinasi COVID-19 di Indonesia menggunakan Algoritme Random Forest dan BERT,” J. Ilmu Komput. Dan Agri-Inform., vol. 9, no. 2, pp. 199–211, Nov. 2022, doi: 10.29244/jika.9.2.199-211.

A. H. Lubis, L. P. A. Lubis, and Sriani, “Sentiment analysis on twitter about the death penalty using the support vector machine method,” TEKNOSAINS J. Sains Teknol. Dan Inform., vol. 11, no. 2, pp. 312–321, 2024, doi: 10.37373.

S. Ariqoh, M. A. Sunandar, and Y. Muhyidin, “Analisis Sentimen Pada Produk Cushion di Website Female Daily Menggunakan Metode Support Vector Machine (SVM),” STORAGE J. Ilm. Tek. Dan Ilmu Komput., vol. 2, no. 3, pp. 137–142, Aug. 2023, doi: 10.55123/storage.v2i3.2345.

D. Abimanyu, E. Budianita, E. P. Cynthia, F. Yanto, and Y. Yusra, “Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER,” J. Nas. Komputasi Dan Teknol. Inf. JNKTI, vol. 5, no. 3, pp. 423–431, Jun. 2022, doi: 10.32672/jnkti.v5i3.4382.

Published
2025-03-22
Abstract views: 221 times
Download PDF: 112 times
How to Cite
Anies, A., & Ikhsan, M. (2025). Sentiment Analysis of ’Free Lunch for Children’ Policy on Social Media X Using Random Forest Algorithm. Journal of Information Systems and Informatics, 7(1), 649-662. https://doi.org/10.51519/journalisi.v7i1.1039
Section
Articles