Clustering Sugar Content in Children's Snacks for Diabetes Prevention Using Unsupervised Learning

  • Irma Darmayanti Universitas Amikom Purwokerto, Indonesia
  • Dhanar Intan Surya Saputra Universitas Amikom Purwokerto, Indonesia
  • Inka Saputri Universitas Amikom Purwokerto, Indonesia
  • Nurul Hidayati Universitas Amikom Purwokerto, Indonesia
  • Nandang Hermanto Universitas Amikom Purwokerto, Indonesia
Keywords: Diabetes, Snacks, Children's, K-Means, Hierarchical, Unsupervised Learning

Abstract

Diabetes is a chronic health problem with increasing prevalence, especially among children, due to the consumption of sugary foods/beverages. This study aims to cluster children's snack products based on sugar content using unsupervised learning by combining Hierarchical Clustering and K-Means algorithms optimized using Silhouette Score. This combined approach utilizes Hierarchical Clustering to determine the optimal value (????) of K-Means, ensuring the efficiency and accuracy of data clustering. A total of 157 sample data were effectively clustered with K-means. The test results with Silhouette Score yielded the highest value of 0.380 for 2 clusters, while 3 clusters scored 0.350 and 0.277 for 4 clusters. For this reason, 2 clusters better represent the homogeneity of the data in the cluster, although it has not reached the ideal condition. Further analysis showed that high sugar and calorie content in sugary drinks, including milk, could increase blood glucose levels. These findings can be the basis for the development of consumer-friendly nutrition labels. However, support is needed from the government to create a labelling policy to ensure the sustainability of implementation in the community as an educational effort to prevent the risk of diabetes in children.

Downloads

Download data is not yet available.

References

S.-K. dr. Mohammad Robikhul Ikhsan, MKes., “Sardjito Menyapa Acces To Diabetes Care,” RSUP Dr. Sardjito Yogyakarta, vol. 1, pp. 1–15, 2021.

E. F. Dungga and Y. Indiarti, “Risk Factors For Type 2 Diabetes Mellitus Patients At The Monano Health Center, North Gorontalo District,” Jambura Nurs. J., vol. 6, no. 1, pp. 40–56, 2024.

S. Ellahham, “Artificial Intelligence: The Future for Diabetes Care,” Am. J. Med., vol. 133, no. 8, pp. 895–900, 2020, doi: 10.1016/j.amjmed.2020.03.033.

S. Nurvita, “Diabetes Mellitus Tipe 1 Pada Anak Di Indonesia,” PREPOTIF J. Kesehat. Masy., vol. 7, no. April, pp. 635–639, 2023.

J. M. Lawrence et al., “Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001-2017,” JAMA, vol. 326, no. 8, pp. 717–727, 2021, doi: 10.1001/jama.2021.11165.

Y. Hasanah, “Diabetes Pada Anak,” Conf. Med. Sci. Dies Natalis Fac. Med. Univ. Sriwij., vol. 1, no. 1, pp. 19–27, 2019, doi: 10.32539/confmednatalisunsri.v1i1.3.

A. Khoiriyah, D. M. Sholikhah, and D. N. Supriatiningrum, “Correlation Between Snack Consumption Habits with Nutritional Status of Children at Muhammadiyah Elementary School in the Gresik District,” Ghidza Media J., vol. 1, no. 2, pp. 107–116, 2023.

A. R. Hidayat, H. Hanipah, A. Nurjanah, and R. Farizki, “Upaya untuk Mencegah Penyakit Diabetes pada Usia Dini,” J. Forum Kesehat. Media Publ. Kesehat. Ilm., vol. 11, no. 2, pp. 63–69, 2022, doi: 10.52263/jfk.v11i2.229.

T. Ragelienė, “Do children favor snacks and dislike vegetables? Exploring children’s food preferences using drawing as a projective technique. A cross-cultural study,” Appetite, vol. 165, p. 105276, 2021, doi: 10.1016/j.appet.2021.105276.

I. Darmayanti et al., “Menjadi Orang Tua Digital: Panduan Praktis Untuk Mengawasi Penggunaan Internet Anak,” vol. 5, no. 4, pp. 1090–1099, 2024.

A. A. Fitriana, “Pemahaman Orang Tua Mengenai Gizi Anak,” J. Pendidik. Mod., vol. 5, no. 3, pp. 96–101, 2020, doi: 10.37471/jpm.v5i3.92.

L. Rahmawati, “Hubungan Antara Pengetahuan Gizi Dan Kebiasaan Konsumsi Jajanan Tinggi Energi Dengan Status Gizi Pada Anak Usia Sekolah Dasar Di Kecamatan Kanor Kabupaten Bojonegoro,” Universitas Islam Negeri Walisongo Semarang, 2022.

R. D. Rizkina et al., “Type 1 Diabetes Mellitus in Children: Diagnosis and Management,” J. Biol. Trop., vol. 23, no. 1, pp. 104–111, 2023, doi: 10.29303/jbt.v23i4b.5820.

N. M. Almoraie, R. Saqaan, R. Alharthi, A. Alamoudi, L. Badh, and I. M. Shatwan, “Snacking patterns throughout the life span: potential implications on health,” Nutr. Res., vol. 91, pp. 81–94, 2021, doi: 10.1016/j.nutres.2021.05.001.

R. I. Kemenkes, “Laporan Nasional Riskesdas 2018,” 2019.

S. D. . Pasaribu, O. Komalasari, Suheti, and R. A. . Putri, “Hubungan Peran Orang Tua Dengan Perilaku Jajan Tidak Aman Pada Anak Usia Sekolah Dasar Di RW 006 Parigi Lama Pondok Aren Tangerang Selatan,” J. Kesehat. STIKes IMC Bintaro, vol. VI, pp. 1–8, 2023.

R. Vena and M. C. Yuantari, “Kajian Literatur: Hubungan Antara Pola Makan Dengan Kejadian Diabetes Melitus,” J. Kesehat. Masy. STIKES Cendekia Utama Kudus P-ISSN, vol. 9, pp. 255–266, 2022.

A. Nur, E. Fitria, A. Zulhaida, and S. Hanum, “Hubungan Pola Konsumsi dengan Diabetes Melitus Tipe 2 pada Pasien Rawat Jalan di RSUD Dr. Fauziah Bireuen Provinsi Aceh,” Media Penelit. dan Pengemb. Kesehat., vol. 26, no. 3, pp. 145–150, 2017, doi: 10.22435/mpk.v26i3.4607.145-150.

J. Huo et al., “Screen Time and Its Association with Vegetables, Fruits, Snacks and Sugary Sweetened Beverages Intake among Chinese Preschool Children in Changsha, Hunan Province: A Cross-Sectional Study,” Nutrients, vol. 14, no. 19, 2022, doi: 10.3390/nu14194086.

I. Darmayanti, D. Mustofa, N. Hidayati, and I. Saputri, “K - Means and Fuzzy C - Means Cluster Food Nutrients for Innovative Diabetes Risk Assessment,” vol. 13, pp. 2175–2182, 2024.

A. Nurhayati, R. Mardaweni, and R. M. Widiastuti, “Noodle Grouping Based on Nutritional Similarity with Hierarchical Cluster Analysis Method,” Sainteks J. Sain dan Tek., vol. 2, no. 2, pp. 112–125, 2023, doi: 10.37577/sainteks.v.

N. Husna, F. Hanum, and M. F. Azrial, “Pengelompokkan Produk Kemasan yang Harus Dihindari Penderita Diabetes Menggunakan Algoritma K-Means Clustering,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 4, no. 1, pp. 167–174, 2019, doi: 10.30743/infotekjar.v4i1.1484.

D. Selvia and A. Wahyuni, “Hubungan Pola Makan dan Obesitas Dengan Kejadian Diabetes Melitus,” J. Kesehat. Saintika Meditory, vol. 4, no. 4657, pp. 78–84, 2022.

D. Suprapti, “Hubungan Pola Makan Karbohidrat, Protein , Lemak, Dengan Diabetes Mellitus pada Lansia,” J. Borneo Cendekia, vol. 11, no. 1, pp. 8–20, 2017.

Baiq Nikum Yulisasih, H. Herman, and S. Sunardi, “K-Means Clustering Method For Customer Segmentation Based On Potential Purchases,” J. ELTIKOM, vol. 8, no. 1, pp. 83–90, 2024, doi: 10.31961/eltikom.v8i1.1137.

A. Karim, F. Nurhadi, I. K. O. Setiawan, I. A. Rizky, and R. Br. Manurung, “Pengaruh Normalisasi Data pada Klasifikasi Harga Ponsel Berdasarkan Spesifikasi Menggunakan Klasifikasi Naive Bayes dan Multinomial Logistic Regression,” J. Rekayasa Elektro Sriwij., vol. 4, no. 1, pp. 8–16, 2023, doi: 10.36706/jres.v4i1.59.

R. G. Whendasmoro and J. Joseph, “Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja Algoritma K-NN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 872, 2022, doi: 10.30865/jurikom.v9i4.4526.

A. T. R. Dani, S. Wahyuningsih, and N. A. Rizki, “Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu,” Jambura J. Math., vol. 1, no. 2, pp. 64–78, 2019, doi: 10.34312/jjom.v1i2.2354.

M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,” Entropy, vol. 23, no. 6, pp. 1–17, 2021, doi: 10.3390/e23060759.

K. R. Shahapure and C. Nicholas, “Cluster Quality Analysis Using Silhouette Score,” in 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 2020, pp. 747–748. doi: 10.1109/DSAA49011.2020.00096.

E. Yakın et al., “‘In-between orthorexia’ profile: the co-occurrence of pathological and healthy orthorexia among male and female non-clinical adolescents,” J. Eat. Disord., vol. 10, no. 1, pp. 1–14, 2022, doi: 10.1186/s40337-022-00673-z.

O. Yim and K. T. Ramdeen, “Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data,” 2015.

Published
2024-12-31
Abstract views: 136 times
Download PDF: 74 times
How to Cite
Darmayanti, I., Saputra, D., Saputri, I., Hidayati, N., & Hermanto, N. (2024). Clustering Sugar Content in Children’s Snacks for Diabetes Prevention Using Unsupervised Learning. Journal of Information Systems and Informatics, 6(4), 2923-2936. https://doi.org/10.51519/journalisi.v6i4.932
Section
Articles

Most read articles by the same author(s)