Leveraging NLP to Analyze Regulatory Document Interconnections: A Systematic Review

  • Yudi Agusta Institute of Technology and Business STIKOM Bali, Indonesia
  • I Gusti Ayu Aprilia Santi Institute of Technology and Business STIKOM Bali, Indonesia
  • Ni Putu Putri Intan Maharani Institute of Technology and Business STIKOM Bali, Indonesia
Keywords: Regulatory Documents, Natural Language Processing, Text Mining, Systematic Literature Review

Abstract

A sustainable digital village requires an effective policy management mechanism to deliver relevant regulatory information to the community. Management information systems for regulations play a crucial role in achieving this. However, communities still face challenges in understanding and navigating the relationships between various regulations. To address this issue, this study conducts a systematic review of the components found in regulatory documents and the methods used to analyze them. The review identifies eight key components in regulatory documents: topic, structure, category, initiator, level, considerations, related regulations, and content. Natural Language Processing (NLP) techniques can be employed for data preprocessing, including tokenization, lowercasing, stop word removal, stemming, filtering, part-of-speech tagging, lemmatization, and chunking. For feature extraction, methods such as TF-IDF, bag-of-words, WordCount, N-grams, and word embeddings can be applied. To measure the interconnection between regulations, techniques like cosine similarity and K-Means clustering can be utilized. Experimental results demonstrate that combining different methods significantly influences the accuracy of identifying regulatory interconnections. The choice of methods whether simple or complex depends on the context, and confirmation through manual analysis is often required to ensure accuracy.

Downloads

Download data is not yet available.

References

H. Sartika, E. Purnama, and I. Ismail, "Standard Patterns of Considerations in Law, District Regulation and Qanun Based on Legal Rules in Indonesia," Pancasila and Law Review, vol. 2, no. 2, pp. 121–132, 2021.

S. J. Spiegel, "Governance institutions, resource rights regimes, and the informal mining sector: Regulatory complexities in Indonesia," World Dev., vol. 40, no. 1, pp. 189–205, 2012.

S. C. Fanni, M. Febi, G. Aghakhanyan, and E. Neri, "Natural language processing," in Introduction to Artificial Intelligence, Springer, 2023, pp. 87–99.

E. Rahmi, E. Yumami, and N. Hidayasari, "Analisis Metode Pengembangan Sistem Informasi Berbasis Website: Systematic Literature Review," Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 7, no. 1, pp. 821–834, 2023.

V. R. Prasetyo, N. Benarkah, and V. J. Chrisintha, "Implementasi natural language processing dalam pembuatan chatbot pada program information technology universitas surabaya," J. TEKNIKA, vol. 10, no. 2, pp. 114–121, 2021.

D. Apriliani, S. F. Handayani, and I. T. Saputra, "Implementasi Natural Language Processing (NLP) Dalam Pengembangan Aplikasi Chatbot Pada SMK YPE Nusantara Slawi," Techno. com, vol. 22, no. 4, 2023.

M. N. Zhafar, K. Usman, and F. Akhyar, "Penerapan Metode Clustering Dengan Algoritma K-Means Untuk Analisa Persebaran Varian Covid-19 (Studi Kasus Kelurahan Antapani Kidul)," eProceedings Eng., vol. 10, no. 5, 2023.

N. W. Utami and I. G. J. E. Putra, "Text Minig Clustering Untuk Pengelompokan Topik Dokumen Penelitian Menggunakan Algoritma K-Means Dengan Cosine Similarity," J. Inform. Teknologi dan Sains (Jinteks), vol. 4, no. 3, pp. 255–259, 2022.

J. Nurvania, J. Jondri, and K. M. Lhaksamana, "Analisis Sentimen Pada Ulasan di TripAdvisor Menggunakan Metode Long Short-Term Memory (LSTM)," eProceedings Eng., vol. 8, no. 4, 2021.

P. M. Prihatini, "Implementasi Ekstraksi Fitur Pada Pengolahan Dokumen Berbahasa Indonesia," J. Manajemen Teknol. dan Inform. (MATRIX), vol. 6, no. 3, pp. 174–178, 2016.

F. B. Sejati, P. Hendradi, and B. Pujiarto, "Deteksi Plagiarisme Karya Ilmiah Dengan Pemanfaatan Daftar Pustaka Dalam Pencarian Kemiripan Tema Menggunakan Metode Cosine Similarity (Studi Kasus: Di Universitas Muhammadiyah Magelang)," J. Komtika (Komputasi dan Informatika), vol. 2, no. 2, pp. 85–94, 2018.

S. Yusuf, M. A. Fauzi, and K. C. Brata, "Sistem Temu Kembali Informasi Pasal-Pasal KUHP (Kitab Undang-Undang Hukum Pidana) Berbasis Android Menggunakan Metode Synonym Recognition dan Cosine Similarity," J. Pengembangan Teknol. Inform. dan Ilmu Komputer, vol. 2, no. 2, pp. 838–847, 2018.

P. Widyantari and A. Sulistiyono, "Pelaksanaan Harmonisasi Rancangan Undang-Undang Perlindungan Data Pribadi (RUU PDP)," J. Privat Law, vol. 8, no. 1, pp. 117–123, 2020.

A. O. R. Ritz, "Tugas Dan Peran Kepala Bagian Hukum Sekretariat Daerah Dalam Penyusunan Rancangan Peraturan Daerah Di Kabupaten Tapin Provisi Kalimantan Selatan," Dinamika, vol. 29, no. 2, pp. 8186–8197, 2023.

A. Fitryantica, "Harmonisasi Peraturan Perundang-Undangan Indonesia melalui Konsep Omnibus Law," Gema Keadilan, vol. 6, no. 3, pp. 300–316, 2019.

A. R. Dewi and S. Hadi, "Konstitusionalitas Permenkumham Nomor 02 Tahun 2019 Penyelesaian Konflik Norma Melalui Mediasi," Bureaucracy J.: Indones. J. Law and Soc.-Political Gov., vol. 2, no. 2, pp. 693–702, 2022.

S. W. Laia and S. Daliwu, "Urgensi landasan filosofis, sosiologis, dan yuridis dalam pembentukan undang-undang yang bersifat demokratis di indonesia," J. Educ. Dev., vol. 10, no. 1, pp. 546–552, 2022.

O. I. Khair, "Analisis Landasan Filosofis, Sosiologis Dan Yuridis Pada Pembentukan Undang-Undang Ibukota Negara," Academia: J. Inovasi Riset Akad., vol. 2, no. 1, pp. 1–10, 2022.

J. P. Pratama, L. T. ALW, and S. A. G. Pinilih, "Eksistensi Kedudukan Peraturan Menteri terhadap Peraturan Daerah dalam Hierarki Peraturan Perundang-Undangan," 2022.

S. M. Mahmudah and M. Rahayu, "Pengelolaan konten media sosial korporat pada instagram sebuah pusat perbelanjaan," J. Komun. Nusantara, vol. 2, no. 1, pp. 1–9, 2020.

R. Anggraeni, "Memaknakan Fungsi Undang-Undang Dasar Secara Ideal Dalam Pembentukan Undang-Undang," Masalah-Masalah Hukum, vol. 48, no. 3, pp. 283–293, 2019.

B. E. D. Tamin, "Tinjauan Yuridis Terhadap Kedudukan Peraturan Mahkamah Agung (Perma) Dalam Hierarki Peraturan Perundang-Undangan Di Indonesia," Lex Administratum, vol. 6, no. 3, 2019.

R. I. Amin and A. Achmad, "Mengurai permasalahan peraturan perundang-undangan di indonesia," Res Publica: J. Hukum Kebijakan Publik, vol. 4, no. 2, pp. 205–220, 2020.

Y. Prasetyo, "Urgensi Pembentukan Peraturan Perundang-Undangan Yang Berkeadilan," J. Legislasi Indones., vol. 20, no. 2, 2023.

Z. Afif, "Pembentukan Peraturan Perundang-Undangan Berdasarkan Pancasila Dan Undang-Undang Dasar Negara Kesatuan Republik Indonesia," J. Dialog, vol. 7, no. 1, 2018.

S. Parendo and Y. F. AW, "Analisis Dan Implementasi Algoritma Active Fuzzy Constrained Clustering Untuk Pengelompokan Dokumen," JURIKOM (J. Riset Komputasi), vol. 9, no. 2, pp. 194–201, 2022.

E. Dinata and H. Syaputra, "Penerapan Metode Agglomerativ Hirarchical Clusturing Untuk Klasifikasi Dokumen Skripsi," in Bina Darma Conf. Comput. Sci. (BDCCS), 2020, pp. 412–422.

E. Setiyowati, "Hidden Markov Model Bigram Untuk Part Of Speech Tagging Bahasa Lampung Dialek A," J. Teknologi Pintar, vol. 2, no. 11, 2022.

M. Astiningrum, P. Y. Saputra, and M. S. Rohmah, "Implementasi nlp dengan konversi kata pada sistem chatbot konsultasi laktasi," J. Inform. Polinema, vol. 5, no. 1, pp. 46–52, 2018.

H. P. Fitrian, I. Ruslianto, and R. Hidayati, "Implementasi Metode Naive Bayes Classifier Untuk Aplikasi Filtering Email Spam Dengan Lemmatization Berbasis Web," Coding J. Komput. dan Apl., vol. 6, no. 2, 2018.

P. R. Togatorop, R. P. Simanjuntak, S. B. Manurung, and M. C. Silalahi, "Pembangkit Entity Relationship Diagram Dari Spesifikasi Kebutuhan Menggunakan Natural Language Processing Untuk Bahasa Indonesia," J-Icon: J. Komput. dan Inform., vol. 9, no. 2, pp. 196–206, 2021.

M. S. Negara and A. Z. Mardiansyah, "Implementasi Machine Learning dengan Metode Collaborative Filtering dan Content-Based Filtering pada Aplikasi Mobile Travel (Bangkit Academy)," J. Begawe Teknol. Inform. (JBegaTI), vol. 5, no. 1, pp. 126–136, 2024.

R. P. Kawiswara and F. Thalib, "Implementasi Algoritma Convolutional Neural Network Pada Algoritma K-Means Untuk Kategorisasi Data Teks," J. Teknol., vol. 7, no. 2, pp. 149–160, 2020.

T. M. Sari et al., "Penerapan Sorted Wordcount Dengan Mapreduce Hadoop," J. Network and Comput. Appl., vol. 2, no. 1, pp. 1–12, 2023.

M. D. Marieska, A. S. Utami, and E. Oktaviani, "Perbandingan Metode Mapreduce Berbasis Single Node Hadoop Pada Aplikasi Word Count," JUPITER: J. Penelitian Ilmu dan Teknol. Komput., vol. 16, no. 1, pp. 347–356, 2024.

Z. Pratama, E. Utami, and M. R. Arief, "Analisa Perbandingan Jenis N-GRAM Dalam Penentuan Similarity Pada Deteksi Plagiat," Creative Inform. Technol. J., vol. 4, no. 4, pp. 254–263, 2019.

E. A. Lisangan, "Implementasi n-gram technique dalam deteksi plagiarisme pada tugas mahasiswa," TEMATIKA: J. Penelitian Teknik Inform. dan Syst. Inform., pp. 71–77, 2013.

I. G. Anugrah, "Penerapan Metode N-Gram dan Cosine Similarity Dalam Pencarian Pada Repositori Artikel Jurnal Publikasi," Building of Informatics, Technol. and Sci. (BITS), vol. 3, no. 3, pp. 275–284, 2021.

L. K. Şenel, I. Utlu, V. Yücesoy, A. Koc, and T. Cukur, "Semantic structure and interpretability of word embeddings," IEEE/ACM Trans Audio Speech Lang Process., vol. 26, no. 10, pp. 1769–1779, 2018.

F. P. Rachman and H. Santoso, "Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing," J. Teknologi dan Manajemen Inform., vol. 7, no. 2, pp. 103–112, 2021.

T. Young, D. Hazarika, S. Poria, and E. Cambria, "Recent trends in deep learning based natural language processing," IEEE Comput Intell Mag., vol. 13, no. 3, pp. 55–75, 2018.

Y. Yuliska and K. U. Syaliman, "Literatur Review Terhadap Metode, Aplikasi dan Dataset Peringkasan Dokumen Teks Otomatis untuk Teks Berbahasa Indonesia," IT J. Res. and Dev., vol. 5, no. 1, pp. 19–31, 2020.

D. A. C. Rachman, R. Goejantoro, and F. D. T. Amijaya, "Implementasi Text Mining Pengelompokkan Dokumen Skripsi Menggunakan Metode K-Means Clustering," EKSPONENSIAL, vol. 11, no. 2, pp. 167–174, 2021.

M. A. Haq, W. Purnomo, and N. Y. Setiawan, "Analisis Clustering Topik Survey menggunakan Algoritme K-Means (Studi Kasus: Kudata)," J. Pengembangan Teknol. Inform. dan Ilmu Komputer, vol. 7, no. 7, pp. 3498–3506, 2023.

G. E. I. Kambey, R. Sengkey, and A. Jacobus, "Penerapan Clustering pada Aplikasi Pendeteksi Kemiripan Dokumen Teks Bahasa Indonesia," J. Teknik Informatika, vol. 15, no. 2, pp. 75–82, 2020.

M. Z. Naf’an, A. Burhanuddin, and A. Riyani, "Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen," J. Linguistik Komputasional, vol. 2, no. 1, pp. 23–27, 2019.

Published
2024-09-30
Abstract views: 104 times
Download PDF: 73 times
How to Cite
Agusta, Y., Santi, I. G. A., & Maharani, N. P. P. (2024). Leveraging NLP to Analyze Regulatory Document Interconnections: A Systematic Review. Journal of Information Systems and Informatics, 6(3), 2130-2158. https://doi.org/10.51519/journalisi.v6i3.861