Stock Grouping Based on Price Earnings Ratio and Price Book Value Using K-Medoids Algorithm

  • Muhammad Oemar Abdillah State Islamic University of North Sumatra, Indonesia
  • Raissa Amanda Putri State Islamic University of North Sumatra, Indonesia
Keywords: Investment, K-Medoids, Clustering, Information System

Abstract

Investing involves allocating funds to achieve optimal returns by evaluating opportunities and managing risks in asset acquisition. Recently, many news reports have highlighted issues in the Indonesian capital market, such as stock investors using online loan funds for trading, which often leads to debt. This research aims to apply the K-Medoids algorithm for stock clustering, enabling investors to select fundamentally sound stocks based on the Price-Earnings Ratio (PER) and Price-Book Value (PBV). The K-Medoids method results show that Cluster 1 includes 93 stocks with moderate PER and PBV values. Cluster 2 comprises 91 stocks with the lowest PER and PBV values. Cluster 3 contains 113 stocks with the highest PER and PBV values. Developing an information system that classifies stocks based on PER and PBV can help investors analyze and make investment decisions more effectively.

Downloads

Download data is not yet available.

References

M. S. Munir and P. Rahardiyanto, “Sistem Pendukung Keputusan Pemilihan Investasi Saham Syariah Dalam Indeks JII 70 Menggunakan Metode Ahp Beserta Perhitungan,” SPIRIT, vol. 15, no. 2, 2023.

R. P. Sari and M. R. Maulana, “Sistem Pendukung Keputusan Rekomendasi Emiten Saham Menggunakan Metode Simple Additive Weighting,” J. Sist. Komput. dan Inform., vol. 2, no. 3, p. 321, 2021.

D. Tohendry and D. Jollyta, “Penerapan Algoritma K-Means Cluster Ing Untuk Pengelompokkan Saham Berdasarkan Price Earning Ratio Dan Price To Book Value,” J. Mhs. Apl. Teknol. Komput. dan Inf., vol. 5, no. 1, pp. 3–9, 2023.

M. Mikrad and A. Budi, “Pengaruh Struktur Modal, Likuiditas, Dan Keputusan Investasi Terhadap Nilai Perusahaan Pada Perusahaan Jasa Sub Sektor Pariwisata, Hotel, Dan Restoran Yang Terdaftar Di Bei Tahun 2014-2018,” Dyn. Manag. J., vol. 4, no. 1, 2020.

Tandelilin, “Pasar Modal Manajemen Portofolio dan Investasi,” Kanisius Daerah Istimewa Yogyakarta, pp. 302, 2017.

A. M. Peranginangin, “Keputusan Investasi Saham Dengan Analisis Fundamental Melalui Pendekatan Price Earning Ratio (Per)(Studi Pada Saham-Saham,” Jurakiman (Jurnal Akunt. dan Manajemen, vol. 14, no. 2, pp. 91-110, 2021.

S. Sukamulja, “Pengantar Pemodelan Keuangan Dan Analisis Pasar Modal (Edisi 1), Yogyakarta, Andi Offset,” Ed. 1, Yogyakarta, Andi Offset, pp. 1–158, 2017.

A. Ikhwan and N. Aslami, “Implementasi Data Mining untuk Manajemen Bantuan Sosial Menggunakan Algoritma K-Means,” J. Teknol. Inf., vol. 4, no. 2, pp. 208–217, 2020.

Z. Mustofa and Iman Saufik Suasana, “Algoritma Clustering K-Medoids Pada E-Government Bidang Information and Communication Technology Dalam Penentuan Status Edgi,” J. Teknol. Inf. Dan Komun., vol. 9, no. 1, pp. 1–10, 2020.

A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan, ” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 3. pp.516-526, 2021.

H. Pohan, M. Zarlis, E. Irawan, H. Okprana, and Y. Pranayama, “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia,” JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 97–104, 2021.

E. Tasia and M. Afdal, “Comparison Of K-Means And K-Medoid Algorithms For Clustering Of Flood-Prone Areas In Rokan Hilir District Perbandingan Algoritma K-Means Dan K-Medoids Untuk Clustering Daerah Rawan Banjir Di Kabupaten Rokan Hilir,” Indones. J. Inform. Res., vol. 3, no. 1, pp. 65–73, 2023.

G. Dwilestari, Mulyawan, Martanto, and I. Ali, “Analisis Clustering menggunakan K-Medoid pada Data Penduduk Miskin Indonesia,” JURSIMA J. Sist. Inf. dan Manaj., vol. 9, no. 3, pp. 282–290, 2021.

F. Fajriana, “Analisis Algoritma K-Medoids pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 263, 2021.

G. Mahesa, Y. H. Chrisnanto, “Sistem Pengelompokkan Penjualan Vaksin Dan Serum di Pt Bio Farma Menggunakan Metode K-Medoids,” in Prog Prosiding Sains Nasional dan Teknologi, 2019.

M. S. Haq, M. Samani, Karwanto, and N. Hariyati, “Android-Based Digital Library Application Development,” Int. J. Interact. Mob. Technol., vol. 16, no. 11, pp. 224–237, 2022.

Muhamad Alda, “Sistem Informasi Laundry Menggunakan Metode Waterfall Berbasis Android Pada Simply Fresh Laundry,” J. Teknol. Inf., vol. 3, no. 2, pp. 122–129, 2019.

R. Kurniawan, A. Halim, and H. Melisa, “Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 2, pp. 903–912, 2023.

R. A. Putri and A. M. Dewi, “Mobile-Based Document and Salary Application Case Study : Kemenag Labuhan Batu,” Infokum, vol. 10, no. 1, pp. 722–730, 2021.

Published
2024-09-18
Abstract views: 86 times
Download PDF: 56 times
How to Cite
Abdillah, M., & Putri, R. (2024). Stock Grouping Based on Price Earnings Ratio and Price Book Value Using K-Medoids Algorithm. Journal of Information Systems and Informatics, 6(3), 1704-1722. https://doi.org/10.51519/journalisi.v6i3.809