Spatial Analysis of Changes in Normalization Differences Vegetation Index in Protected Forest Areas of South Lore District, Poso Regency

  • Muhammad Adam Suni Centre for Lore Lindu National Park, Indonesia https://orcid.org/0000-0002-1237-1613
  • Muhammad Darmawan Basoka Centre for Lore Lindu National Park, Indonesia
  • Muhammad Rafiq Centre for Lore Lindu National Park, Indonesia
  • Mohamad Fahrul Himalaya Umar Tadulako University, Indonesia
  • Hasriani Muis Tadulako University, Indonesia
  • Rhamdhani Fitrah Baharuddin Tadulako University, Indonesia
  • Agusman Agusman Center for Watershed Management Palu Poso, Indonesia
Keywords: Vegetation Density, Normalized Differenced, Vegetation Index, NDVI

Abstract

Detection of changes in vegetation density generally uses the vegetation index parameter. The value of the vegetation index can provide information on the proportion of vegetation cover, live plant index, plant biomass, cooling capacity, and estimation of carbon dioxide absorption. This study aims to analyze changes in the level of vegetation density using Sentinel 2-A imagery in the protected forest area of South Lore District. This study used the method of calculating the Normalized Difference Vegetation Index (NDVI) to identify changes in density over 5 years. The results of the NDVI analysis are the largest in the range of -0.92960 to 0.871725. The vegetation density class in the Protected Forest Area of South Lore District in 2017 is in the dense class with an area of 15,322.24 Ha or around 47.66%, while the smallest in the non-vegetation class, which is 103.11 Ha or 0.32%, while the largest vegetation density class is in the Protected Forest Area of South Lore District in 2022, namely in the medium/quite dense class with an area of 19,948.18 Ha or 62.01% while the smallest in the non-vegetation class of 219.17 Ha or 0.68%. The largest increase in area was in the moderate/quite dense class of 4,892.33 Ha or 15.20% while the largest decrease in area was in the dense class with an area of 6,651.16 Ha or 20.67% of the total area of the Protected Forest Area of South Lore District.

Downloads

Download data is not yet available.

References

V. Kevin, S. Que, Y. J. Prasetyo, and C. Fibriani, “Analisis Perbedaan Indeks Vegetasi Normalized Difference Vegetation Index (NDVI) dan Normalized Burn Ratio (NBR) Kabupaten Pelalawan Menggunakan Citra Satelit Landsat 8,” Indones. J. Comput. Model., vol. 2, no. 1, pp. 1–7, Jun. 2019.

Y. Safitri, and E. A. Giofandi, “Pemanfaatan Citra Multi Spektral Landsat OLI 8 Dan Sentinel-2A dalam Menganalisis Degradasi Vegetasi Hutan dan Lahan (Studi Kasus: Cagar Alam Rimbo Panti, Pasaman)”, Jurnal Geografi dan Pembelajaran Geografi, vol. 4, no. 2, pp. 115–121, 2019. doi: 10.31851/swarnabhumi.v4i2.2950.

T. Mahesti, E. Umar, A. Ariadi, S. Y. J. Prasetyo, and C. Fibriani, “Identifikasi Perubahan Tutupan Vegetasi dan Curah Hujan Kabupaten Semarang Menggunakan Citra Saltelit Lansat 8”, Indonesian Journal of Computing and Modeling, vol. 3, no. 1, pp. 30–42, 2020.

Muhammad Irvan Aditiya, “Analisis Kerapatan Vegetasi Menggunakan Metode NDVI Di Kecamatan Banguntapan Kabupaten Bantul”, geographia: j. pendidik. dan penelit. geografi, vol. 2, no. 2, pp. 150-156, 2021.

M. M. F. Wong, J. C. H. Fung, and P. P. S. Yeung, “High-resolution calculation of the urban vegetation fraction in the Pearl River Delta from the Sentinel-2 NDVI for urban climate model parameterization,” Geosci. Lett., vol. 6, no. 1, pp. 1–10, Dec. 2019, doi: 10.1186/S40562-019-0132-4.

C. Evangelides and A. Nobajas, “Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration,” Remote Sens. Appl. Soc. Environ., vol. 17, p. 100283, Jan. 2020, doi: 10.1016/J.RSASE.2019.100283.

H. Rakuasa, D. A. Sihasale, H. Rakuasa, and D. A. Sihasale, “Analysis of Vegetation Index in Ambon City Using Sentinel-2 Satellite Image Data with Normalized Difference Vegetation Index (NDVI) Method based on Google Earth Engine,” J. Innov. Inf. Technol. Appl., vol. 5, no. 1, pp. 74–82, Jun. 2023, doi: 10.35970/JINITA.V5I1.1869.

R. Latuconsina, G. Mardiatmoko, and J. D. Putuhena, “Variation Of NDVI Vegetation Index In Landscape Change Of Ambon City, Maluku Province,” J. Hutan Pulau-Pulau Kecil, vol. 4, no. 1, pp. 1–13, Apr. 2020, doi: 10.30598/jhppk.2020.4.1.1.

K. Kaimuddin. "Analisa Perambahan Kawasan Hutan terhadap Kebocoran Carbon dan Perubahan Iklim (Studi Kasus Desa Bantimurung Kecamatan Bone-bone Kabupaten Luwu Utara)," J. Hutan dan Masy., vol. 3, no. 2, p. 8217, 2008.

A. Arnanto, “Pemanfaatan transformasi Normalized Difference Vegetation Index (NDVI) citra Landsat TM untuk zonasi vegetasi di lereng Merapi bagian selatan”, Geo Media: Majalah Ilmiah dan Informasi Kegeografian, vol. 11, no. 2, pp. 155–170, Feb. 2013, doi: 10.21831/GM.V11I2.3448.

I. Philiani, L. Saputra, L. Harvianto, and A. A. Muzaki, “Pemetaan Vegetasi Hutan Mangrove Menggunakan Metode Normalized Difference Vegetation Index (NDVI),” Surya Octag. Interdiscip. J. Technol., vol. 1, no. 2, pp. 211–222, 2016.

M. Iskandar, T. B. Sanjoto, and S. Sutardji, “Analisis Kerapatan Vegetasimenggunakan Teknik Penginderaan Jauh Sebagai Basis Evaluasi Kerusakan Hutan Di Taman Nasional Gunung Gede Pangrango”, J. Geo-Image, vol. 1, no. 1, pp. 94–101, 2012, doi: 10.15294/GEOIMAGE.V1I1.953.

C. Virma Aftriana, S. Parman, and T. Budi Sanjoto, “Analisis Perubahan Kerapatan Vegetasi Kota Semarang Menggunakan Aplikasi Penginderaan Jauh”, J. Geo-Image, vol. 2, no. 1, pp. 1–7, 2013,” Geo-Image J., vol. 2, no. 2, 2013, doi: 10.15294/GEOIMAGE.V2I2.2188.

J. Aryal, C. Sitaula, and S. Aryal, “NDVI Threshold-Based Urban Green Space Mapping from Sentinel-2A at the Local Governmental Area (LGA) Level of Victoria, Australia,” Land, vol. 11, no. 3, p. 351, Mar. 2022, doi: 10.3390/LAND11030351/S1.

J. H. Pietersz, J. Matinahoru, and R. Loppies, “Pendekatan Indeks Vegetasi Untuk Mengevaluasi Kenyamanan Termal Menggunakan Data Satelit Landsat-Tm Di Kota Ambon,” Agrologia, vol. 4, no. 2, Feb. 2018, doi: 10.30598/A.V4I2.208.

S. Irawan and J. Sirait, “Perubahan Kerapatan Vegetasi Menggunakan Citra Landsat 8 Di Kota Batam Berbasis Web,” J. Kelaut. Indones. J. Mar. Sci. Technol., vol. 10, no. 2, p. 174, Feb. 2018, doi: 10.21107/JK.V10I2.2685.

Q. Wang, Á. Moreno-Martínez, J. Muñoz-Marí, M. Campos-Taberner, and G. Camps-Valls, “Estimation of vegetation traits with kernel NDVI,” ISPRS J. Photogramm. Remote Sens., vol. 195, pp. 408–417, Jan. 2023, doi: 10.1016/J.ISPRSJPRS.2022.12.019.

K. Sari, . E., and . F., “Analisis Perubahan Kerapatan Vegetasi Kota Padang Menggunakan Citra Landsat Tahun 2005 dan 2015,” J. BUANA, vol. 3, no. 2, pp. 231–241, Mar. 2019, doi: 10.24036/STUDENT.V3I2.339.

D. Yanti, I. Megantara, M. Akbar, S. Meiwanda, S. Izzul, M. D. Sugandi, and R. Ridwana, “Analisis Kerapatan Vegetasi di Kecamatan Pangandaran melalui Citra Landsat 8,” J. Geogr. Edukasi dan Lingkung., vol. 4, no. 1, pp. 32–38, Jan. 2020, doi: 10.29405/JGEL.V4I1.4229.

D. Sudiana and E. Diasmara, “Analisis Indeks Vegetasi menggunakan Data Satelit NOAA/AVHRR dan TERRA/AQUA-MODIS,” Semin. Intell. Technol. Its Appl., pp. 423–428, 2008.

Published
2023-12-01
Abstract views: 1245 times
Download PDF: 543 times
How to Cite
Suni, M., Basoka, M., Rafiq, M., Umar, M. F., Muis, H., Baharuddin, R., & Agusman, A. (2023). Spatial Analysis of Changes in Normalization Differences Vegetation Index in Protected Forest Areas of South Lore District, Poso Regency. Journal of Information Systems and Informatics, 5(4), 1288-1300. https://doi.org/10.51519/journalisi.v5i4.577