Hoax News Analysis for the Indonesian National Capital Relocation Public Policy with the Support Vector Machine and Random Forest Algorithms

  • Aang Kisnu Darmawan Universitas Islam Madura, Indonesia
  • Mohammad Waail Al Wajieh Institut Sains dan Teknologi Annuqayah, Indonesia
  • Mohammad Bhanu Setyawan Universitas Muhammadiyah Ponorogo, Indonesia
  • Tri Yandi Universitas Islam Madura, Indonesia
  • Hoiriyah Hoiriyah Universitas Islam Madura, Indonesia
Keywords: hoax news analysis, national capital relocation, support vector machine, random forest

Abstract

The decision of the Indonesian government to relocate the nation's capital outside Java to the North Penajam Paser Regency has sparked controversy and misinformation on social media platforms. While sentiment analysis studies have been conducted on this topic, no research has yet analyzed the issue of hoaxes related to the relocation of the national capital. This study aims to fill this gap by analyzing hoaxes related to the relocation of the Indonesian national capital on Twitter. The study utilizes data crawling, filtering with Hoax Booster Tools (HBT) ASE, data labeling, preprocessing, and TF-IDF weighting. The data is then classified using Support Vector Machine (SVM) and Random Forest (RF) algorithms, and the results of both algorithms are compared. The study found that 85% of tweets had a positive sentiment and 15% had a negative sentiment. Furthermore, the SVM algorithm outperformed the RF algorithm with an accuracy of 95.24% compared to 86.90%. This study contributes to the understanding of the hoax issues related to the relocation of the Indonesian state capital and provides recommendations for government policies to address community concerns.

Downloads

Download data is not yet available.

References

F. Hadi and R. Ristawati, “Pemindahan Ibu Kota Indonesia dan Kekuasaan Presiden dalam Perspektif Konstitusi,” JK, vol. 17, no. 3, pp. 530–557, Nov. 2020, doi: 10.31078/jk1734.

Tim Kompas, “Kepala Bappenas Umumkan Nama Ibu Kota Baru: Nusantara. Kompas.Com.” 2022. [Online]. Available: https://nasional.kompas.com/read/2022/01/17/12302621/kepala-bappenasumumkan-nama-ibu-kota-baru-nusantara

D. A. Ramadhan, “Analisis Sentimen Program Acara Di Sctv Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” e-Proceeding of Engineering, vol. 6, no. 2, p. 9736, 2019, doi: https://doi.org/10.34818/eoe.v6i2.10708.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic, vol. 7, no. 1, Nov. 2020, doi: 10.21107/edutic.v7i1.8779.

A. M. Hidayat and M. Syafrullah, “Algoritma Naïve Bayes Dalam Analisis Sentimen Untuk Klasifikasi Pada Layanan Internet PT.XYZ,” Jurnal TELEMATIKA MKOM, vol. 9, no. 2, 2017.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” JTK, vol. 15, no. 1, p. 131, Feb. 2021, doi: 10.33365/jtk.v15i1.744.

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI, vol. 8, no. 2, pp. 636–646, Jun. 2021, doi: 10.35957/jatisi.v8i2.962.

S. Lestari, M. Mupaat, and A. Erfina, “Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter,” JUSIFO: J. Sistem Inf., vol. 8, no. 1, pp. 13–22, Jun. 2022, doi: 10.19109/jusifo.v8i1.12116.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” JTIIK, vol. 8, no. 1, p. 147, Feb. 2021, doi: 10.25126/jtiik.0813944.

S. Lestari, “ANALISIS SENTIMEN IBU KOTA NEGARA BARU INDONESIA PADA TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DAN SELEKSI FITUR CHI SQUARE,” Nusa Putra University, SUKABUMI, 2022.

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” RESTI, vol. 5, no. 2, pp. 231–237, Apr. 2021, doi: 10.29207/resti.v5i2.2698.

N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,” J.Gauss, vol. 9, no. 3, pp. 237–246, Aug. 2020, doi: 10.14710/j.gauss.v9i3.27963.

E. Sutoyo and A. Almaarif, “Twitter sentiment analysis of the relocation of Indonesia’s capital city,” Bulletin EEI, vol. 9, no. 4, pp. 1620–1630, Aug. 2020, doi: 10.11591/eei.v9i4.2352.

M. I. D. Sakariana, “Analisis Sentimen Pemindahan Ibu Kota Indonesia Dengan Pembobotan Term BM25 Dan Klasifikasi Neighbor Weighted K-Nearest Neighbor,” JTIIK, vol. 4, no. 3, pp. 748–755, Mar. 2020.

A. Sa’rony, P. P. Adikara, and R. C. Wihandika, “Analisis Sentimen Kebijakan Pemindahan Ibukota Republik Indonesia dengan Menggunakan Algoritme Term-Based Random Sampling dan Metode Klasifikasi Naïve Bayes,” JTIIK, vol. 3, no. 10, pp. 10086–10094, Oktober 2019.

A. H. Dyo fatra, N. H. Hayatin, and C. S. K. Aditya, “Analisa Sentimen Tweet Berbahasa Indonesia Dengan Menggunakan Metode Lexicon Pada Topik Perpindahan Ibu Kota Indonesia,” JR, vol. 2, no. 11, p. 1562, Dec. 2020, doi: 10.22219/repositor.v2i11.933.

A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN),” Information System Journal (INFOS), vol. 4, no. 2, 2021.

A. Muzakir, H. Syaputra, and F. Panjaitan, “A Comparative Analysis of Classification Algorithms for Cyberbullying Crime Detection: An Experimental Study of Twitter Social Media in Indonesia,” Sci. J. Informatics; Vol 9, No 2 Novemb. 2022DO - 10.15294/sji.v9i2.35149 , Oct. 2022, [Online].

M. W. Pertiwi, “Analisis Sentimen Opini Publik Mengenai Sarana Dan Transportasi Mudik Tahun 2019 Pada Twitter Menggunakan Algoritma Naïve Bayes, Neural Network, KNN dan SVM,” vol. 14, no. 1, 2019.

M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” JI. Jurnal. Informatika, vol. 6, no. 2, pp. 226–235, Sep. 2019, doi: 10.31311/ji.v6i2.5129.

G. A. Buntoro, “Analisis Sentimen Hatespeech Pada Twitter Dengan Metode Naïve Bayes Classifier Dan Support Vector Machine,” Jurnal Dinamika Informatika, vol. 5, no. 2, 2016.

Published
2023-03-03
Abstract views: 94 times
Download PDF: 64 times
How to Cite
Darmawan, A., Al Wajieh, M., Setyawan, M., Yandi, T., & Hoiriyah, H. (2023). Hoax News Analysis for the Indonesian National Capital Relocation Public Policy with the Support Vector Machine and Random Forest Algorithms. Journal of Information Systems and Informatics, 5(1), 150-173. https://doi.org/10.51519/journalisi.v5i1.438