Hoax News Analysis for the Indonesian National Capital Relocation Public Policy with the Support Vector Machine and Random Forest Algorithms
Abstract
The decision of the Indonesian government to relocate the nation's capital outside Java to the North Penajam Paser Regency has sparked controversy and misinformation on social media platforms. While sentiment analysis studies have been conducted on this topic, no research has yet analyzed the issue of hoaxes related to the relocation of the national capital. This study aims to fill this gap by analyzing hoaxes related to the relocation of the Indonesian national capital on Twitter. The study utilizes data crawling, filtering with Hoax Booster Tools (HBT) ASE, data labeling, preprocessing, and TF-IDF weighting. The data is then classified using Support Vector Machine (SVM) and Random Forest (RF) algorithms, and the results of both algorithms are compared. The study found that 85% of tweets had a positive sentiment and 15% had a negative sentiment. Furthermore, the SVM algorithm outperformed the RF algorithm with an accuracy of 95.24% compared to 86.90%. This study contributes to the understanding of the hoax issues related to the relocation of the Indonesian state capital and provides recommendations for government policies to address community concerns.
Downloads
References
F. Hadi and R. Ristawati, “Pemindahan Ibu Kota Indonesia dan Kekuasaan Presiden dalam Perspektif Konstitusi,” JK, vol. 17, no. 3, pp. 530–557, Nov. 2020, doi: 10.31078/jk1734.
Tim Kompas, “Kepala Bappenas Umumkan Nama Ibu Kota Baru: Nusantara. Kompas.Com.” 2022. [Online]. Available: https://nasional.kompas.com/read/2022/01/17/12302621/kepala-bappenasumumkan-nama-ibu-kota-baru-nusantara
D. A. Ramadhan, “Analisis Sentimen Program Acara Di Sctv Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” e-Proceeding of Engineering, vol. 6, no. 2, p. 9736, 2019, doi: https://doi.org/10.34818/eoe.v6i2.10708.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic, vol. 7, no. 1, Nov. 2020, doi: 10.21107/edutic.v7i1.8779.
A. M. Hidayat and M. Syafrullah, “Algoritma Naïve Bayes Dalam Analisis Sentimen Untuk Klasifikasi Pada Layanan Internet PT.XYZ,” Jurnal TELEMATIKA MKOM, vol. 9, no. 2, 2017.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” JTK, vol. 15, no. 1, p. 131, Feb. 2021, doi: 10.33365/jtk.v15i1.744.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI, vol. 8, no. 2, pp. 636–646, Jun. 2021, doi: 10.35957/jatisi.v8i2.962.
S. Lestari, M. Mupaat, and A. Erfina, “Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter,” JUSIFO: J. Sistem Inf., vol. 8, no. 1, pp. 13–22, Jun. 2022, doi: 10.19109/jusifo.v8i1.12116.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” JTIIK, vol. 8, no. 1, p. 147, Feb. 2021, doi: 10.25126/jtiik.0813944.
S. Lestari, “ANALISIS SENTIMEN IBU KOTA NEGARA BARU INDONESIA PADA TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DAN SELEKSI FITUR CHI SQUARE,” Nusa Putra University, SUKABUMI, 2022.
P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” RESTI, vol. 5, no. 2, pp. 231–237, Apr. 2021, doi: 10.29207/resti.v5i2.2698.
N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,” J.Gauss, vol. 9, no. 3, pp. 237–246, Aug. 2020, doi: 10.14710/j.gauss.v9i3.27963.
E. Sutoyo and A. Almaarif, “Twitter sentiment analysis of the relocation of Indonesia’s capital city,” Bulletin EEI, vol. 9, no. 4, pp. 1620–1630, Aug. 2020, doi: 10.11591/eei.v9i4.2352.
M. I. D. Sakariana, “Analisis Sentimen Pemindahan Ibu Kota Indonesia Dengan Pembobotan Term BM25 Dan Klasifikasi Neighbor Weighted K-Nearest Neighbor,” JTIIK, vol. 4, no. 3, pp. 748–755, Mar. 2020.
A. Sa’rony, P. P. Adikara, and R. C. Wihandika, “Analisis Sentimen Kebijakan Pemindahan Ibukota Republik Indonesia dengan Menggunakan Algoritme Term-Based Random Sampling dan Metode Klasifikasi Naïve Bayes,” JTIIK, vol. 3, no. 10, pp. 10086–10094, Oktober 2019.
A. H. Dyo fatra, N. H. Hayatin, and C. S. K. Aditya, “Analisa Sentimen Tweet Berbahasa Indonesia Dengan Menggunakan Metode Lexicon Pada Topik Perpindahan Ibu Kota Indonesia,” JR, vol. 2, no. 11, p. 1562, Dec. 2020, doi: 10.22219/repositor.v2i11.933.
A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN),” Information System Journal (INFOS), vol. 4, no. 2, 2021.
A. Muzakir, H. Syaputra, and F. Panjaitan, “A Comparative Analysis of Classification Algorithms for Cyberbullying Crime Detection: An Experimental Study of Twitter Social Media in Indonesia,” Sci. J. Informatics; Vol 9, No 2 Novemb. 2022DO - 10.15294/sji.v9i2.35149 , Oct. 2022, [Online].
M. W. Pertiwi, “Analisis Sentimen Opini Publik Mengenai Sarana Dan Transportasi Mudik Tahun 2019 Pada Twitter Menggunakan Algoritma Naïve Bayes, Neural Network, KNN dan SVM,” vol. 14, no. 1, 2019.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” JI. Jurnal. Informatika, vol. 6, no. 2, pp. 226–235, Sep. 2019, doi: 10.31311/ji.v6i2.5129.
G. A. Buntoro, “Analisis Sentimen Hatespeech Pada Twitter Dengan Metode Naïve Bayes Classifier Dan Support Vector Machine,” Jurnal Dinamika Informatika, vol. 5, no. 2, 2016.


Copyright (c) 2023 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)