Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo

Keywords: Sentiment Analysis, k-NN, Restaurant, Labuan Bajo

Abstract

Analysis of consumer sentiment towards restaurant products and services in the form of reviews on various digital platforms such as Tripadvisor determines business sustainability and the image of tourist destinations. This study aims to classify visitor sentiments as Tripadvisor users towards Happy Banana Komodo, MadeInItaly, Mediterraneo, and La Cucina restaurants in Labuan Bajo. The research stages are divided into three parts, namely the stages of data collection, data processing, classification and evaluation of model performance, and interpretation of data and information. At the data collection stage, Tripadvisor user reviews of products and services at each restaurant are mined using the Webharvy application based on the configuration of the customer name, date of examination, rating, review title, and review. The data mining results are cleaned and prepared to be managed using the RapidMiner application at the data processing stage. The classification and evaluation stage of model performance is the implementation and testing of classification algorithms that are relevant to the dataset, namely Decision Tree (DT), Naïve Bayes (NB), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN). The findings of this study indicate the implementation of the positive and negative sentiment classification method for the comprehensive review data from the Tripadvisor website for the products and services of restaurants Happy Banana Komodo, MadeInITaly, Mediterraneo, and La Cucina Restaurants are relevant with k-Nearest Neighbor (k-NN) with accuracy value of 99.27% ​​, a precision value of 100%, and a recall of 98.53%.

Downloads

Download data is not yet available.

References

[1] H. Kennedy, “Perspectives on Sentiment Analysis,” J. Broadcast. Electron., vol. 56, no. 4, pp. 435–450, 2012, doi: 10.1080/08838151.2012.732141.
[2] S. Shayaa et al., “Linking consumer confidence index and social media sentiment analysis,” Cogent Bus. Manag., vol. 5, no. 1, pp. 1–12, 2018, doi: 10.1080/23311975.2018.1509424.
[3] W. van Atteveldt, M. A. C. G. van der Velden, and M. Boukes, “The Validity of Sentiment Analysis: Comparing Manual Annotation, Crowd-Coding, Dictionary Approaches, and Machine Learning Algorithms,” Commun. Methods Meas., vol. 15, no. 2, pp. 121–140, 2021, doi: 10.1080/19312458.2020.1869198.
[4] M. N. Imtiaz and M. K. Ben Islam, “Identifying Significance of Product Features on Customer Satisfaction Recognizing Public Sentiment Polarity: Analysis of Smart Phone Industry Using Machine-Learning Approaches,” Appl. Artif. Intell., vol. 34, no. 11, pp. 832–848, 2020, doi: 10.1080/08839514.2020.1787676.
[5] Y. A. Singgalen, “Analisis Sentimen dan Pemodelan Topik dalam Optimalisasi Pemasaran Destinasi Pariwisata Prioritas di Indonesia,” J. Inf. Syst. Informatics, vol. 4, no. 1, pp. 459–470, 2021, [Online]. Available: http://journal-isi.org/index.php/isi/article/view/171
[6] Y. A. Singgalen, “Pemilihan Metode dan Algoritma dalam Analisis Sentimen di Media Sosial : Sistematic Literature Review,” J. Inf. Syst. Informatics, vol. 3, no. 2, pp. 278–302, 2021.
[7] N. D. Pratama, Y. A. Sari, and P. P. Adikara, “Analisis Sentimen Pada Review Konsumen Menggunakan Metode Naive Bayes Dengan Seleksi Fitur Chi Square Untuk Rekomendasi Lokasi Makanan Tradisional,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2982–2988, 2018.
[8] P. Sun, D. A. Cárdenas, and R. Harrill, “Chinese Customers’ Evaluation of Travel Website Quality: A Decision-Tree Analysis,” J. Hosp. Mark. Manag., vol. 25, no. 4, pp. 476–497, 2016, doi: 10.1080/19368623.2015.1037977.
[9] M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
[10] F. Ariani, Amir, N. Alam, and K. Rizal, “Klasifikasi Penetapan Status Karyawan Dengan Menggunakan Metode Naive Bayes,” J. Paradig., vol. 20, no. 2, pp. 33–38, 2018, doi: 10.31294/p.v.
[11] Z. Muhammad, R. Rahmadhani, H. Rizqifaluthi, and M. A. Yaqin, “Process Mining Akademik Sekolah menggunakan RapidMiner,” Matics, vol. 10, no. 2, pp. 47–51, 2019, doi: 10.18860/mat.v10i2.5158.
[12] D. I. Angkiriwang, K. C. Susanto, and S. Thio, “Pengaruh Ulasan Online Di Tripadvisor Terhadap Minat Menginap Generasi Milenial Di Surabaya,” J. Hosp. dan Manaj. Jasa, vol. 6, no. 2, pp. 452–468, 2018, [Online]. Available: http://publication.petra.ac.id/index.php/manajemen-perhotelan/article/view/7517
[13] S. Herayanti, P. A. Wikanatha Sagita, and N. P. Eka Mahadewi, “Faktor-Faktor Yang Mempengaruhi Keputusan Wisatawan Menggunakan Situs Tripadvisor Di Kawasan Pariwisata Kuta Selatan-Bali,” J. IPTA, vol. 6, no. 2, pp. 149–155, 2018, doi: 10.24843/ipta.2018.v06.i02.p09.
[14] C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.
[15] Y. E. Kurniawati, “Class Imbalanced Learning Menggunakan Algoritma Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) pada Dataset Tuberculosis Anak,” J. Buana Inform., vol. 10, no. 2, pp. 134–143, 2019, doi: 10.24002/jbi.v10i2.2441.
[16] R. Azmatul Barro, I. D. Sulvianti, and M. Afendi, “Penerapan Synthetic Minority Oversampling Technique (Smote) Terhadap Data Tidak Seimbang Pada Pembuatan Model Komposisi Jamu,” Xplore J. Stat., vol. 1, no. 1, pp. 1–6, 2013.
[17] A. N. Rais, “Integrasi SMOTE Dan Ensemble AdaBoost Untuk Mengatasi Imbalance Class Pada Data Bank Direct Marketing,” J. Inform., vol. 6, no. 2, pp. 278–285, 2019, doi: 10.31311/ji.v6i2.6186.
Published
2022-09-01
Abstract views: 120 times
Download PDF: 98 times
How to Cite
Singgalen, Y. (2022). Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo. Journal of Information Systems and Informatics, 4(3), 511-523. https://doi.org/10.51519/journalisi.v4i3.276