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Abstract 
 

For millions of deaf-mute individuals, sign language is the only means of communication; 
this creates barriers in daily interactions with non-signers, leading to the exclusion of these 
individuals in many areas of daily life. To address this, we propose a real-time sign language 
translation system using a Transformer model enhanced with a knowledge graph, designed 
for Human-Robot Interaction (HRI) with NAO robots. Our system bridges the 
communication gap by translating gestures into natural language (text). We used the 
RWTH-PHOENIX-Weather 2014T dataset for initial training, achieving a BLEU score of 
29.1 and a Word Error Rate (WER) of 18.2% surpassing the baseline model. Due to the 
domain shift between human gestures and NAO robot gestures, we created a NAO-
specific dataset and fine-tuned the model using transfer learning to accommodate an 
adapted environment and kinematic constraints that do not match the environment in 
which the robot was deployed. This reduced the WER to 17.6% and increased the BLEU 
score to 29.9. We tested our model’s capability with dynamic and practical HRI scenarios 
through comparative experiments in Webots. Integrating a knowledge graph into our 
model improved contextual disambiguation, significantly enhancing translation accuracy 
for gestures that weren't clear. Through effectively translating gestures into natural 
language, our system demonstrates strong potential for practical robotic applications that 
promote social accessibility. 
 
Keywords: Sign Language Translation, Human-Robot Interaction, NAO Robot, 
Transformer Model, Gesture Recognition, Knowledge Graph 
 
1. INTRODUCTION 
 
Research shows that over 420 million people in the world have hearing loss 
problems, 34 million of these individuals are children, and most live in low- and 
middle-income countries [1]. Therefore, bridging the communication gap between 
non-signers and deaf or hard-of-hearing people remains one of the most important 
social challenges. For many members of the Deaf community, sign language is their 
primary means of communication however, its limited general population adoption 
creates barriers to accessibility and social integration [2]. Developments in sign 
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language translation (SLT) and recognition (SLR) systems have become 
increasingly popular in computer vision and robotics to fill this gap. 
 
From early sensor-based techniques that used wearable technology to record hand 
orientations and movements [3], [4], to vision-based techniques that use raw RGB 
data for recognition, Sign Language Recognition (SLR) has undergone significant 
development. Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), two contemporary deep learning techniques, have shown 
impressive performance gains [5], [6] since the advent of large-scale datasets like 
RWTH-PHOENIX-Weather-2014T [7]. However, in real-world applications, 
these approaches frequently struggle to capture temporal dependencies that are 
essential for dynamic gesture recognition [8], [9]. 
 
Natural language processing (NLP) and computer vision tasks have been 
transformed by recent developments in Transformer-based architectures, with 
applications extending to Sign Language Recognition (SLR) and Sign Language 
Translation (SLT). Transformers, like the Video Vision Transformer (ViViT), are 
well suited for tasks involving dynamic gestures because they have demonstrated 
the capacity to model long-range dependencies in video data [10], [11]. 
Notwithstanding these developments, kinematic limitations and domain shifts 
between human and robotic gestures present new difficulties when integrating Sign 
Language Recognition (SLR) systems into robots, like NAO robot [12]. 
 
The evolution of sign language recognition started from sensor-based approaches 
that used gloves and Leap Motion controllers to record precise hand movements 
[13], [14], [15], [16], [17], to vision-based systems that only use camera feeds [3], 
[8], [18], [19], sign language recognition systems have advanced. Vision-based SLR 
methods can be divided into two categories: dynamic gesture recognition, which 
uses methods like Hidden Markov Models (HMMs) and dynamic time wrapping 
[20], [21], and static gesture recognition, which uses algorithms like K-Nearest 
Neighbors [22], deep learning's introduction has greatly improved SLR. In order 
to capture temporal and spatial features in continuous sign language videos, CNNs 
and RNNs have become widely used. For better dynamic gesture recognition, for 
instance, [5] suggested a hybrid CNN-HMM model, and [23] , [24]combined 
CNNs with bi-directional LSTMs. Even with these developments, cross-modal 
alignment between textual and visual modalities is still a common problem for 
traditional architectures [6]. 
 
The ability of transformer-based architectures [11] to accurately model temporal 
and spatial dependencies has made them a breakthrough in Sign Language 
Recognition and Sign Language Translation. ViViT, a Transformer designed 
specifically for videos, demonstrated notable advancements in gesture recognition 
through the use of multi-head attention mechanisms [10]. Similarly, by combining 
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attention mechanisms and sequence generation, the Progressive Transformer 
showed success in converting text into sign language gestures and poses [25]. For 
tasks requiring cross-modal alignment, these techniques perform better than 
conventional CNNs and RNNs. 
 
The possibilities for HRI applications have increased with the integration of social 
robots and SLR systems. Real-time gesture recognition and translation, for 
instance, has been made possible by NAO and Pepper robots, allowing for organic 
human-robot interaction [12], [26]. Kinematic limitations and domain shifts 
between human and robotic gestures are two difficulties that arise when models 
are adapted to robotic platforms [27]. Robots can now accurately perform sign 
language gestures thanks to techniques like motion retargeting and domain 
adaptation [4]. 
 
Even though earlier research in SLR produced impressive results, there are still 
many unanswered questions. First of all, most current systems ignore the 
complexity of dynamic sign language sequences in favor of static or isolated 
gestures [6], [10]. Secondly, there hasn't been enough research done on real-time 
performance in real-world situations, especially in HRI scenarios using 
Transformers. Thirdly, the use of knowledge graphs for contextual understanding 
mechanisms is still relatively new [2]. To fill these gaps, this study suggests a 
Transformer-based framework that captures dynamic sign language sequences and 
uses transfer learning to adjust to robotic limitations, integrating a knowledge 
graph to address contextual ambiguities or signs that are unclear in sign language 
translation with the aid of an attention mechanism. We utilize the NAO robot to 
show the novelty of the system's performance in real-time in HRI scenarios.  
 
2. METHODS 

 
Figure 1 shows the architecture of our proposed model, it builds upon the baseline 
transformer[11], designed for translating sign language sequences of videos into 
natural language or text of their respective gestures which can be understood by 
hearing people. Our approach builds upon recent advancements in Sign Language 
Translation (SLT) mainly from SLTUNET [28], which supports general 
vision/language-to-language generation tasks. We extend these ideas by adding a 
knowledge graph to provide contextual support for gestures that are not clear, 
improving fluency and accuracy in complex sign language phrases. This section 
outlines each phase of our approach, from data preprocessing through 
Transformer encoding, knowledge integration, and decoding, concluding with a 
description of our real-world validation setup with a NAO Robot. 
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Figure 1. Architecture of our proposed Transformer model for sign language 

translation. 
 

2.1. Model Architecture Overview 
 
Following an encoder-decoder framework from Transformers [11], which has led 
the way in many language tasks [29] through accurately modeling long-range 
dependencies through self-attention, our objective is to learn the conditional 
probability 𝑃(𝑌|𝑋), where 𝑋 is the sequence of sign language video frames and 𝑌 
is the translated text output. Unlike traditional models that rely on gloss-based 
translations or isolated recognition tasks, our model is designed for end-to-end 
translation while combining contextual embeddings from a knowledge graph and 
the attention mechanism to improve translation fluency. 
 

P(Y|X) = ' P(Yt)Y< t,X*

|Y|

t = 1

 
(1)	
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where 𝒴!  is the 𝑡-th token in the output sequence 𝑌, conditioned on the input 
sequence 𝑋 and previously generated tokens 𝒴"	!.  
 
2.2. Data Preprocessing and Feature Extraction 
 
Video sequences of sign language gestures are preprocessed to extract meaningful 
spatial-temporal features using a pre-trained ResNet50 Convolutional Neural 
Network (CNN) [30], we extract spatial features from each frame, producing a 
series of sign language embeddings as seen in Equation (2). Positional encodings 
are then applied to these embeddings to ensure that temporal information is 
retained. This approach closely mirrors the preprocessing strategy used by 
SLTUNET [28] and [31], but with the addition of a knowledge graph, we increase 
context-awareness in the sign embeddings, enabling the model to take in 
background information suitable to the gestures. 
 

Xebb = ResNet(X) (2) 
 
where 𝑋$%%	 is a sequence of embeddings representing each frame, to retain 
temporal information, we add positional encodings: 
 

Xebb = Xebb + Ppos  (3) 
 
where 𝑃&'(	 is the positional encoding matrix. This assists our model to learn the 
order in sign language gestures within different sequences as assigned producing 
sign language tokens (SL_Tokens). This preprocessing pipeline guarantees that the 
model’s input is as uniform as possible while preserving both spatial and temporal 
gesture data, a condition needed to achieve good gesture-to-text conversion. 
 
2.3. Encoding and Decoding Process 
 
2.3.1. Encoder  
 
Then we process the SL_Tokens through a sequence of transformer encoder 
layers, consisting of both self-attention and feed-forward sublayers. With this 
encoding, each sign is contextualized, it is encoded along with the dependencies in 
sign sequences across video frames with the aim of learning the relationship 
between each token of the sequence and how relevant each time step is in the 
context of the full sequence as mirrored from [25] resulting in; 
 

ENC_SL = fenc (Xenc) (4) 
 
where 𝐸𝑁𝐶_𝑆𝐿 is the output encoding for the sign language sequence. The next 
step after receiving encoded features is integrating contextual knowledge from the 
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knowledge graph in order to improve the quality of the translation and fluency of 
gestures. 
 
2.3.2. Knowledge Graph Integration 
 
As seen in Figure 2 using pre-computed embeddings, we integrate external 
contextual knowledge from a Knowledge Graph. We achieve this by mapping each 
Knowledge Graph (KG) entity to a fixed-dimensional vector using the standard 
KG embedding algorithm, CompIEx [32]. We obtain the matching KG 
embedding for every input sign token and concatenate it with the output 
representation of the encoder as seen in equation (6). The decoder layers receive a 
richer input as a result, enabling the model to use outside semantic cues to 
distinguish between signs. Our method relies on well-established embedding 
techniques instead of custom graph neural architectures, and therefore adds 
minimal complexity at runtime because these embeddings are computed offline 
which is faster compared to existing models that typically lack such external 
contextual support for sign language gestures.  

 
Figure 2. Shows the CompIEx Knowledge graph. 

 
We define; 

KG_embed= fKG(KG)  (5) 
 
𝑓)*  denotes the embedding function for the knowledge graph 
 
The final encoder representation adds the KG embeddings to give the decoder a 
richer semantic representation. We define; 
 

ENC_final = ENC_SL+ KG_embed (6) 
 
The knowledge graph is used to refine the generated SL_Tokens by querying for 
relevant information during the translation process. 𝐸𝑁𝐶_𝑓𝑖𝑛𝑎𝑙 contains both 
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temporal information from the video sequence tokens and contextual information 
from the KG embeddings. 
 
2.3.3. Decoder 
 
The decoder then processes the encoded and improved representations 
𝐸𝑁𝐶_𝑓𝑖𝑛𝑎𝑙 through its layers, generating text tokens that represent the translated 
spoken word or language equivalent of the input gestures. With an autoregressive 
approach, the decoder produces tokens one by one, basing on previously generated 
tokens and thereby produces coherent and contextually correct translations 
(natural language). At each time step 𝑡, the decoder output 𝒴! is given by: 
 

Yt =	fdec(Y< t,ENC_final* (7) 
 
where 𝑓+$, represents the decoder function. This output is then taken to a SoftMax 
layer to get the probabilities for each token in the vocabulary. Finally, the decoder 
generates accurate and clear text translations, filling the gap between visual gestures 
and natural language. 
 
2.4. Training Objectives 
 
Our model adopted SLTUNET’s multi-task training approach [28], but our 
training objective in this research is to minimize the difference between the 
predicted text and the ground-truth text for each sign language gesture sequence. 
We achieve this by employing two main objectives to guide the model's learning 
process: 
 
2.4.1. Maximum Likelihood Estimation (MLE) Objective 
 
With this, we want to ensure that the model maximizes the probability of 
generating the correct sequence of words (text) for a given gesture input. The MLE 
objective is given by: 
 

LMLE = - 9 log P(Yt | Y< t,X*

|Y|

t = 1

 (8) 

 
Where 𝒴!	represents the target token at the time 𝑡, 𝒴"	!, denotes the tokens 
generated up to the time 𝑡, 𝑋 is the encoded representation of the gesture 
sequence. 
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2.4.2. Knowledge Graph Integration Objective 
 
To improve contextual relevance and further fine-tune the translation we 
incorporate knowledge graph embeddings during the decoding process. 
Knowledge graph offers semantic clues particularly in cases of polysemy or 
variable context signals for some signs. This integration can be formalized as: 
 

LKG = - 9 log P(Yt | Y< t,X,K*

|Y|

t = 1

 (9) 

 
where 𝐾 denotes the contextual embeddings from the knowledge graph. The idea 
is to improve translation quality and language proximity by using real-life related 
translations as the model for a generation. 
 
2.4.3. Combined Training Objective 
 
Finally, we combine these two components, using a balancing parameter α to 
control the influence of the knowledge graph objective: 
 

Ltotal = LMLE + αLKG (10) 
where: 

α is a hyperparameter controlling the balance between the two objectives, 
𝐿./0	 ensures fidelity to the sequence, and 𝐿)*  enhances contextual 
translation. 

 
Table 1 shows how the knowledge graph comes in handy in handling words with 
more than one meaning during contextual disambiguation. The graph uses such 
contextual cues to direct the model to the exact translation to choose. So, for 
example, if a bank is used as the word, the knowledge graph helps understand if 
it's a financial institution or riverbank and helps the model select the correct 
interpretation based on usage. This aims at getting a more accurate translation of 
words into sign language gestures and there is a variety of what the word can mean. 
As explained above our model offers high flexibility to take in different 
relationships from the knowledge graph and the attention mechanism this allows 
us to explore enough knowledge that is needed during natural language translation. 
 

Table 1. Examples of Sign Language Words Requiring Contextual 
Disambiguation from the Knowledge Graph. 

No. Gesture Knowledge Graph 
(Difference) Example Context 

1 "Book" "Reading material" and 
"reservation" 

"Read a book" vs. "Book a 
ticket" 



Journal of Information Systems and Informatics 
Vol. 7, No. 1, March 2025 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

  

186 | Real-Time Sign Language Recognition and Translation in Humanoid Robots ….. 

No. Gesture Knowledge Graph 
(Difference) Example Context 

2 "Run" "Physical activity" from 
"executing a process" 

"Go for a run" vs. "Run a 
program" 

3 "Bank" "Financial institution" vs. 
"riverbank" 

"Visit the bank" vs. "Walk by 
the bank" 

4 "Cold" "temperature" vs. "illness" "It’s cold outside" vs. "Caught 
a cold" 

5 "Suit" "clothing" from "legal action" "Wear a suit" vs. "File a suit" 

7 "Date" "day" vs. "romantic 
engagement" 

"Today’s date" vs. "Dinner 
date" 

8 "Light" "illumination" from "weight" "Turn on the light" vs. "Light 
to carry" 

9 "Charge" "cost" vs. "electricity" "Charge a fee" vs. "Battery 
charge" 

 
2.5. Dataset and Data Preparation 
 
2.5.1. RWTH-PHOENIX-Weather 2014T Dataset 
 
The RWTH-PHOENIX-Weather 2014T dataset [7] is a popular resource for sign 
language translation research that includes more than 8,000 video clips of German 
Sign Language (DGS) from 9 signers in a weather broadcast channel as seen by 
the frames in Figure 3. With vocabulary of 1,066 unique signs, 2,887 spoken words, 
each sequence contains gloss, textual translation into German, and synchronous 
gesture. This dataset was selected for its well documented annotations, the broad 
range of vocabulary ubiquitously used and applicable to our training needs for sign 
to text translation. In addition, the status of the dataset as standardized, publicly 
available ensures the reproducibility and the possibility of comparative evaluation 
of studies. 
 

 
Figure 3. Some image frames from the RWTH-PHOENIX-Weather 2014T 

Dataset. 



Journal of Information Systems and Informatics 
Vol. 7, No. 1, March 2025 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

  

Erick Busuulwa, Li-Hong Juang | 187 

2.5.2. NAO-Robot Specific Gesture Dataset Creation 
 
To address the domain shift from human gestures to NAO robot gestures, we 
created a custom NAO gesture dataset as seen by the data frames in Figure 4 for 
fine-tuning the model. Using Choreographe and Webots Software, we defined and 
recorded NAO-specific gestures, linking each with corresponding text. This 
dataset allows the model to adapt to the unique movement patterns of the NAO 
robot while preserving its understanding of general gesture structures learned from 
human data. This NAO gesture dataset was essential for testing the model's real-
time translation performance in a virtual environment, providing a realistic 
approximation of NAO’s translation capabilities. Together, the RWTH-
PHOENIX-Weather 2014T [7] and NAO gesture datasets ensured the model's 
readiness for deployment, both in simulation and practical applications. 
 
2.6. Transfer Learning and Fine-Tuning for NAO 
 
Transfer learning, as drawn from [33], was employed as the main approach to 
bridge the domain shift between human gesture data and NAO robot-specific 
gestures. The model was first trained on a large dataset of human gestures, yielding 
a rich source of general features (concerning gesture structure and movement). 
The broad base provided the model with the opportunity to learn key patterns in 
gesture recognition and language translation through the heightened availability 
and diversity of human gesture datasets. A custom NAO gesture dataset was used 
for the customization of the model so that it best fits NAO’s gesture 
characteristics. Then fine tuning was done by applying it on the custom NAO 
gesture dataset.  
 
The retraining was done by first retraining the first 2 layers of the model using 
NAO-specific gestures to adjust to the mechanical constraints and the artifacts of 
the movement of NAO while retaining the learned general concepts on the human 
data. A key part of this was this fine-tuning step, allowing the model to be able to 
interpret gestures within the restricted NAO limited articulation range, and 
predefined gestures. To address the issue of domain shift in a real-time NAO 
gesture translation application, the model was fine-tuned by transfer learning from 
low low-resource language translation dataset in a simulated environment, 
improving the translation accuracy for robotic applications. In this approach, the 
model is made adaptive and robust concerning the capability of recognizing and 
mapping the gestures performed by NAO, as it closely mimics these actions in the 
real world. 
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Figure 4. Custom dataset for Nao Robot showing Data Frames from the video 

gestures. 
 

3. RESULTS AND DISCUSSION 
 
3.1. Experimental setup 
 
Our dataset includes recordings of the NAO robot performing 10 specific signs, 
each mapped to a corresponding textual meaning. The dataset primarily focuses 
on capturing the robot's hand movements, orientation, configuration, and position 
over time. The original videos, recorded at a resolution of 1920x1080 pixels and 
30 fps, were approximately 13 seconds long each. These videos were resized to 
224x224 pixels to align with the model’s input dimensions. To prepare the dataset, 
frames were extracted using OpenCV, with zero-padding applied to shorter sides 
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of each frame to maintain square dimensions, samples of these dataset frame are 
seen in Figure 4. During training, 16 frames were randomly sampled from each 
video, ensuring they effectively captured the full range of movement for each sign. 
For testing, frames were uniformly sampled across the video sequences to provide 
consistent input. 
 
Training large models from scratch can be computationally intensive [34]. To 
address this, we fine-tuned a pre-trained Transformer model [28] enhanced with a 
knowledge graph for contextual understanding.  The model was configured with; 
Encoder layers: 𝑁$1,2 	= 	2, 𝑁$1,3 	= 	0, Decoder layers: 𝑁+$, 	= 	2, Model 
dimension: 𝑑 = 512, Feed-forward dimension 𝑑44 = 2048, and Attention heads 
ℎ = 8. The model input shape was 16x3x224x224, allowing all frame pairs to 
interact within the self-attention module. The Adam optimizer [35] was used for 
model optimization with a linear learning rate scheduler and a warm-up ratio of 
0.1. Experiments were conducted on an Intel i7-4600M CPU with 8 GB NVIDIA 
GPU, using a batch size of 128. During fine-tuning, the initial 8 layers of the 
Transformer were retained, as they effectively captured reusable low-level 
spatiotemporal features crucial for NAO-specific gestures. 
 
3.1.1. HRI Experiments and Settings 
 
HRI experiments were conducted using two NAO robots in the Webots 
simulation software under diverse conditions. Figure 5 illustrates the program 
flowchart, starting with a gesture performed by either a person or another NAO 
robot.  
 

 
Figure 5. Shows the flowchart of the Robot Interaction in Webots. 
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The NAO robot’s integrated camera sensors capture the gesture as a video feed, 
which is then preprocessed to match the model's input requirements (224x224 
resolution, 30 fps) using OpenCV. The preprocessed video is passed to the gesture 
recognition module, followed by semantic interpretation to determine the gesture's 
textual meaning. If the gesture is clear, the system outputs its interpretation. 
Otherwise, the NAO robot captures a new video feed and retries until a valid 
gesture is recognized. This pipeline validates the model’s ability to handle dynamic 
HRI scenarios, showcasing its potential for real-time gesture interpretation. 
 
3.2. Performance Evaluation 
 
Our model's performance was evaluated on the RWTH-PHOENIX-Weather 
2014T dataset [7] using BLEU and WER scores [5], [6], [36], and the results 
demonstrate significant improvements in translation accuracy and robustness 
when compared to the baseline model. Table 2 summarizes the results. Our 
approach, which adds a knowledge graph for contextual understanding for gestures 
that are not clear and those that have different meanings, reduced the Word Error 
Rate (WER) from 18.9% to 18.2%, achieved BLEU score of 29.1 on the RWTH-
PHOENIX-Weather 2014T test set, achieved a BLEU Score of 29.9 and finally 
reduced the WER to 17.6% on the NAO-specific dataset. This represents an 
improvement of 2.12 BLEU points over existing state-of-the-art approaches. This 
improvement highlights the effectiveness of transfer learning and incorporating 
contextual information to resolve ambiguities in sign language gestures. 
 

Table 2. Shows results when compared with the baseline model. 
Model Dataset WER (%) ↓ BLEU ↑ 

SLTUNET[28] RWTH-PHOENIX-2014T 18.9 27.87 
Baseline (No KG) RWTH-PHOENIX-2014T 19.4 27.9 
Proposed Model RWTH-PHOENIX-2014T 18.2 29.1 
Proposed Model NAO-Specific Dataset 17.6 29.9 

 
3.2.1. Transfer Learning 
 
Starting with a pre-trained model allowed us to leverage general gesture features 
learned from the large-scale RWTH-PHOENIX-Weather 2014T dataset. Fine-
tuning for NAO-specific gestures preserved low-level spatiotemporal features 
while adapting higher-level layers to the NAO robot's unique gesture patterns. This 
strategy significantly reduced training time and enhanced performance in robotic 
contexts, with consistent BLEU gains across test conditions. 
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3.2.2. Augmentation and Regularization 
 
Due to a small set of Nao specific dataset, data augmentation techniques such as 
random cropping and horizontal flipping of sign frames were used which 
improved BLEU scores by 0.3 points. Additionally, applying stochastic BPE 
dropout (rate: 0.5) during training provided regularization, which reduced 
overfitting and increased robustness under low-resource conditions. 
 
3.2.3. Evaluating Translation 
 
To validate the model's performance, the Webots simulation environment was 
used, Red Nao performed sign language gesture while Blue Nao, responsible for 
performing translations, successfully recognized and translated most gestures into 
their right text translation via the console as seen in Figure 6. In a real-world 
environment, this process would use the text-to-speech functionality, enabling 
NAO to speak the textual meaning of the sign language performed by a human. 
However, due to resource constraints, certain gestures were executed at a slower 
rate, resulting in occasional recognition issues. Figure 7 provides a summary result 
of the gestures tested during the simulation in Webots. While Webots simulation 
provided a controlled environment to validate the model[37], it is anticipated that 
real-world scenarios would yield similar performance, as simulations are designed 
to mimic physical robot behavior. The simulation allowed us to ensure safety and 
validate the model before transferring it to a physical NAO robot. 
 

 
Figure 6. Webots simulation setup showing NAO robots performing gesture 

execution and recognition. 
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3.2.4. Quantitative Comparison 
 
Figure 8 (A-D) shows that the performance of the model is dramatically improved 
for both accuracy and loss curves, when a knowledge graph is added. With the 
increase in training epochs, the training and validation curves of the model with a 
KG are more accurate with less loss compared to the model without a KG. In 
addition, the KG-enhanced model performed better in the test data, converged 
faster, and, most notably, had a much-reduced gap between training and validation 
metrics. Finally, these results confirm that the use of this KG correctly improves 
model contextual awareness and performance. 
 

 
Figure 7. The heatmap shows the confusion matrix for tested gestures, with 
diagonal values indicating correctly predicted gestures, such as 'Think,' 'Love,' 

and 'Remember,' with over 95% accuracy. 
 

3.2.5. Domain Adaptation with NAO Gesture Dataset 
 
Fine-tuning the model on the NAO-specific dataset successfully addressed the 
domain shift between human gestures and robotic gestures. This adaptation led to 
a further WER reduction from 18.2% to 17.6% and an additional BLEU score gain 
of 0.8 points as shown by the BLEU and WER trends in Figure 8 (E and F) 
respectively. By training the model on NAO-specific movements, we ensured a 
seamless translation experience, even under the robot's kinematic constraints. 
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Figure 8. Comparison of model accuracy and loss over 120 epochs with and 
without a knowledge graph (A-D) then BLEU and WER score curves (E-F). 

 
3.2.6. Testing Scenarios 
 
The testing scenarios were designed to reflect real-world human-robot 
interactions, with experiments conducted entirely in Webots due to the 
unavailability of a physical robot. In these tests: 
1) Red Nao Robot: Simulated a human by performing pre-defined gestures. This 

was controlled using keyboard commands, with each command triggering a 
specific gesture. 

2) Blue Nao Robot: Captured these gestures using its camera sensors, processed 
the input through the fine-tuned model, and translated the gestures into their 
corresponding textual outputs. The corporation of two robots[38] ensured a 
realistic simulation of human-to-robot interaction as seen in Figure 9 and 
Figure 10, where the Blue Nao observed the movements of Red Nao from 
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various angles and in different environments and translated them into textual 
meanings. 

 

 
Figure 9. Shows screenshots of two NAO robots in Webots, with the camera 

perspective of one robot capturing gesture movements in the top left corner, and 
the corresponding textual translation is displayed in the Webots console. 
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Figure 10. Webots simulation setups showing two NAO robots performing sign 

language interaction under different controlled environments. 
 

3.3. Discussion 
 
The integration of a knowledge graph (KG) into our Transformer-based model 
has significantly improved sign language translation accuracy, particularly in 
handling contextual ambiguities that commonly occur in dynamic gestures. Unlike 
traditional approaches, where signs with multiple meanings often lead to 
misinterpretation, the knowledge graph enhances contextual awareness, ensuring 
that words like "run" and "bank" are interpreted correctly based on their usage 
within a given interaction. This improvement is reflected in the BLEU score of 
29.9 and a reduced Word Error Rate (WER) of 17.6% on the NAO-specific 
dataset, outperforming the baseline model’s BLEU score of 27.9 and WER of 
19.4%. These results highlight the effectiveness of domain adaptation and transfer 
learning in improving robotic sign language interpretation. 
 
A major challenge in sign language translation for robots is the domain shift 
between human and robotic gestures. Unlike human signers, robots like NAO have 
kinematic constraints that limit their ability to reproduce certain movements 
naturally. By fine-tuning the Transformer model on the NAO-specific dataset, we 
successfully addressed these differences, allowing the model to better adapt to 
robotic-specific gesture execution. The BLEU score improvements and WER 
reductions observed in our experiments confirm that transfer learning effectively 
bridges the gap between human motion dynamics and robotic execution, ensuring 
more accurate and reliable translations in Human-Robot Interaction (HRI) 
scenarios. 
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The Webots simulation environment played a critical role in validating our model 
before deployment on a physical NAO robot. The simulation allowed for 
controlled testing scenarios, where a Red NAO acted as the human sign language 
performer and a Blue NAO served as the translator, processing the observed 
gestures and converting them into textual outputs. This setup ensured that the 
model could handle realistic variations in viewpoint, lighting, and movement 
speed, improving its adaptability. The confusion matrix heatmap further confirmed 
the model's robustness, with over 95% accuracy for frequently used signs such as 
"Think," "Love," and "Remember." These results strongly indicate that the 
proposed approach is well-suited for real-time HRI applications, where precise and 
context-aware translations are critical. 
 
Despite these promising results, certain limitations remain. The model occasionally 
struggled with nuanced gestures, such as "know", which sometimes led to incorrect 
interpretations. This is likely due to overlapping hand configurations in different 
signs, making it difficult for the model to distinguish between them. Additionally, 
the small size of the NAO-specific dataset limited the model’s ability to generalize 
across a broader range of gestures. While data augmentation techniques such as 
random cropping and horizontal flipping improved performance slightly, more 
extensive datasets are required to achieve full-scale generalization. Another 
challenge was real-time processing delays, where the gesture recognition and 
translation pipeline experienced minor latency issues in the simulation. This could 
become more pronounced in physical robot deployments, where processing power 
and sensor limitations must be considered. 
 
The reliance on simulation-based testing also introduces some uncertainty 
regarding real-world performance. While Webots provides an accurate digital 
representation of NAO robots, real-world environments introduce unpredictable 
factors such as occlusions, varying lighting conditions, and imperfect robot motion 
execution. Future work should focus on testing the model in real-world HRI 
scenarios to validate its robustness outside of controlled simulation conditions. 
Additionally, the scalability of the knowledge graph remains an area for 
improvement, as its reliance on predefined context rules may limit flexibility when 
encountering new or unseen gestures. 
 
To further enhance system robustness and adaptability, future research should 
explore probabilistic reasoning within the knowledge graph to improve ambiguity 
resolution, especially for gestures with multiple possible interpretations. 
Expanding the dataset to include more diverse signers, environments, and robotic 
movements will also help improve generalization. Furthermore, integrating multi-
modal inputs such as body posture, facial expressions, and hand shape tracking 
could significantly boost translation accuracy by providing additional contextual 
cues. Optimizing the processing pipeline for lower latency and real-time execution 
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will also be essential to ensure seamless communication between humans and 
robots in practical HRI applications. 
 
This study demonstrates that incorporating a knowledge graph-enhanced 
Transformer model significantly improves context-aware gesture recognition and 
translation accuracy for robotic sign language interpretation. The combination of 
transfer learning, fine-tuning, and domain adaptation allowed the model to 
effectively handle the differences between human and robotic gestures, making it 
highly suitable for HRI applications. While challenges remain in dataset size, real-
time performance, and generalization, the results strongly indicate that context-
aware AI models can play a critical role in advancing robotic communication and 
accessibility technologies. Moving forward, further improvements in dataset 
expansion, multi-modal integration, and real-world testing will be key to making 
robotic sign language translation a fully reliable and deployable solution in assistive 
and human-robot interaction contexts. 
 
4. CONCLUSION 
 
The goal of this study was to improve accessibility and social integration by 
bridging the communication gap between deaf and hard-of-hearing people and 
non-sign language speakers. We proved that real-time gesture recognition and 
translation is feasible by utilizing a Transformer-based model coupled with a 
humanoid robot (NAO). By facilitating natural interactions and broadening the use 
of service robots in inclusive communication, this work highlights the potential of 
robots as assistive tools. Through transfer learning and domain adaptation, the 
study was able to achieve notable improvements in translation accuracy. By 
utilizing the RWTH-PHOENIX-Weather 2014T dataset as well as a custom 
dataset that was specific to NAO, the model demonstrated effective domain 
adaptation by achieving notable improvements in BLEU and WER scores. 
Contextual ambiguities were resolved by incorporating a knowledge graph, which 
improved the model's resilience in dynamic environments, through real-world 
scenarios in Webots. Despite these advances, limitations remain, such as limited 
vocabulary size, robot kinematics for various gestures, and reliance on simulated 
environments for testing. Future work should concentrate on transferring to real-
world robotic systems, expanding datasets, and enhancing model generalization 
across various signing styles. The suggested method shows promise for improving 
human-robot interaction and creating greater accessibility for sign language users 
in society by tackling these issues. 
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