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Abstract 
 

The Oryza sativa (rice) plant is an important staple food source, especially in the Asian 
region. Rice production is often disrupted by diseases such as Brown Spot, Leaf Scald, 
Rice Blast, Rice Tungro, and Sheath Blight, which can reduce yield and crop quality. This 
research aims to classify rice plant diseases using a deep learning approach with 
Convolutional Neural Networks (CNN) architecture, namely ResNet50, VGG16, and 
MobileNetV3-Small. The dataset used is Rice Leaf Disease Classification which consists 
of 1305 images with five disease labels. The data is divided into training, validation, and 
testing sets with proportions of 70%, 15%, and 15%. The results showed that the 
MobileNetV3-Small model provided the best accuracy on the test data of 79%, while 
VGG16 achieved the validation accuracy of 78.84%. Based on these results, 
MobileNetV3-Small is considered the most superior model for rice disease classification. 
This research shows the great potential of applying deep learning in automatic rice 
disease detection. 
 
Keywords: Rice, Plant Disease, CNN, ResNet50, VGG16, MobileNetV3-Small, Deep 
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1. INTRODUCTION 
 
Oryza sativa (rice) is a vital staple food crop globally, particularly in Asia, where 
nearly 92% of the world’s rice is both produced and consumed [1]. Rice serves as 
the primary source of carbohydrates for a significant portion of the global 
population, including Indonesia, where it is a fundamental component of daily 
meals [2], [3], [4]. However, despite its importance, rice cultivation faces critical 
challenges, particularly from diseases that reduce crop yields and degrade rice 
quality [5]. Diseases such as Brown Spot, Leaf Scald, Rice Blast, Rice Tungro, 
and Sheath Blight pose serious threats to rice production [6], [7], [8], leading to 
significant economic losses affecting farmers, traders, communities, and the 
broader economy [9]. 
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The rise of information and computing technology, particularly in the area of 
deep learning, has created new opportunities for addressing the problem of rice 
plant diseases [10]. Deep learning, a branch of machine learning, uses artificial 
neural networks to analyze large amounts of data and has shown significant 
success in applications such as image recognition and object detection [11]. 
Specifically, by analyzing images of infected rice plants, deep learning models can 
be trained to detect visual patterns associated with specific diseases. This 
approach holds promise in helping farmers and agricultural experts identify 
diseases more quickly and accurately, allowing for timely intervention. 
 
One of the most effective deep learning methods for image classification is 
Convolutional Neural Networks (CNNs), which have been widely used for 
identifying diseases based on visual symptoms in plants [12], [13], [14]. These 
models can classify diseases by analyzing symptoms present on leaves, stems, and 
other parts of the plant. Several CNN architectures, including ResNet50, 
VGG16, and MobileNetV3-Small, have been developed and applied to rice 
disease classification. Recent research has demonstrated the ability of these 
models to achieve high levels of accuracy in detecting and classifying rice plant 
diseases, which could significantly improve agricultural outcomes. 
 
Despite the promising results from CNN-based models, there remains a notable 
research gap. Current studies have focused primarily on individual models 
without comprehensive comparisons between different architectures, particularly 
regarding their performance on varying dataset sizes. Further research is needed 
to evaluate and compare the effectiveness of different CNN architectures in 
classifying rice diseases. Addressing this gap is crucial for improving the accuracy 
and efficiency of these models, which could lead to better disease management 
strategies in rice farming. 
 
This research aims to address the gap by conducting a comparative analysis of 
three CNN architectures—ResNet50, VGG16, and MobileNetV3-Small—in 
classifying rice plant diseases. By comparing the accuracy of these models and 
evaluating their performance, the study seeks to determine how effectively each 
architecture can classify images of rice diseases. The findings are expected to 
contribute to the development of more accurate and efficient deep learning 
models, which can play a pivotal role in improving rice disease detection and 
enhancing agricultural productivity. 
 
2. MATERIAL AND METHODS 
 
In the research there are several stages that will be carried out, namely, collecting 
datasets, pre-processing, splitting data into training and test data, performing 
classification, finding accuracy and analyzing differences in accuracy. In the 
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research conducted, there are several steps to get the desired results as shown in 
Figure 1. 

 
Figure 1. Research Flow 

2.1. Datasets 
 

Dataset of Rice Leaf Disease Classification for Bangladeshi Local Rice [15] 
which has 5 rice plant disease labels namely, Brown Spot, Leaf Scaled, Rice Blast, 
Rice Tungro, and Sheath Blight. The image dimensions are 1952 x 4160 with a 
total of 1305 image data subjects in the dataset. Some examples of the data are 
shown in Figure 2. 
 

   

(a) (b) (c) 

  
                  (d)                (e) 

Figure 2. Rice Plant Diseases: (a) Brown Spot, (b) Leaf Scaled, (c) Rice Blast, (d) 
Rice Tungro, (e) Shath Blight 
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Based on the number of images for each class, Brown Spot consists of 90 
images, Leaf Scaled has 143 images, Rice Blast contains 198 images, Rice Tungro 
includes 119 images, and Leaf Blight has 219 images. 
 
2.2. Data Spliting 
 
Furthermore, the data split process is carried out, in this study the data is divided 
into 3, namely training data, validation data and test data with a ratio of 70% 
training data, 15% validation data and 15% test data. 
 

Tabel 1. Spliting Data 

Class 
Spliting 

Train (70%) Validation (15%) Test (15%) 

Brown Spot 62 13 15 
Leaf Scaled 100 21 22 
Rice Blast 138 29 31 
Rice Tungro 83 17 19 
Shath Blight 153 32 34 

 
For the Brown Spot class, the dataset consists of 62 training data, 13 validation 
data, and 15 testing data. The Leaf Scaled class has 100 training data, 21 
validation data, and 22 testing data. The Rice Blast class consists of 138 training 
data, 29 validation data, and 31 testing data. The Rice Tungro class has 83 
training data, 17 validation data, and 19 testing data. Finally, the Shath Blight 
class consists of 153 training data, 32 validation data, and 34 testing data. 
Overall, this dataset has a total of 769 data points. 
 
2.3. Pre-Processing 
 
The purpose of the pre-processing stage is to ensure that all images have a 
consistent format and size so they can be effectively used in the training, 
validation, and testing processes of the model. Each image is resized to 224 x 
224 pixels, which is the standard input size expected by the model. This is done 
to ensure that all images have uniform dimensions, as most image classification 
models require consistent input sizes for efficient data processing. Next, data 
transformation is performed to prepare the images in a format that can be 
interpreted by the model. Different transformations are applied for the three 
datasets: train (training), val (validation), and test (testing). Additionally, each 
image is converted from standard formats like JPG or PNG into a tensor, a 
numerical format used by deep learning models such as PyTorch. This 
transformation to tensors allows the images to be processed as numerical data 
that can be computed by the model during further operations. 
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2.4. Model Design 
 
CNN, which stands for Convolutional Neural Network, is a type of artificial 
neural network commonly used for image recognition and processing. CNN is 
often used to recognize objects or detect certain features in an image (Arrofiqoh 
et al, 2018). The development of CNN architecture will adopt transfer learning 
from three popular architectures, namely Resnet50, VGG16, and MobileNetV3-
Small. in each model. A summary of the model is shown in Figure 3. 
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Experimental Results 
 
In this research, the classification process is carried out using 769 images that 
have been divided into training data, validation data, and testing data. The next 
step is to run the training process on the rice disease image into the fit model. In 
Figures 3, 4, and 5 can observe the results of the fit model generator for each of 
the best architectures, where from epoch 10, 50 and epoch 100, there is an 
increasing trend in accuracy values for both training and testing data. 
 

 

 
Figure 3. - Graph of Training and Validation Data loss and Accuracy Values 

from the ResNet50 Architecture 
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Figure 4. Graph of Training and Validation Data loss and Accuracy Values from 

the VGG16 Architecture 
 

 
 
 

 
Figure 5. - Graph of Training and Validation Data loss and Accuracy Values 

from the MobileNetV3-Small Architecture 
 
The best results for training, validation, and testing data for each model 
architecture from epoch 10, 50, and 100 with learning rates of 0.01, 0.001, and 
0.0001 can be seen in Table 2. 
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Table 2. Recapitulation of model results 

Architecture 
Epoch 

Acc 
Learning 

Rate 
Loss 

Val 
Loss 

Acc Val Acc 
Test 
Acc 

Resnet50 50 0.0001 0.1197 1.3815 0.9818 0.7291 39% 
VGG16 100 0.0001 0.0453 1.2253 0.9828 0.7884 23% 
MobileNetV3-
Small 

100 0.001 0.0632 1.3455 0.9797 0.6328 79% 

 
MobileNetV3-Small 100 0.001 0.0632 1.3455 0.9797 0.6328 79% Based on the model 
recapitulation results presented in Table 2, the selection of the best model is based on a 
number of key performance metrics, specifically Validation Accuracy (Val Acc) and Test 
Accuracy (Test Acc). The MobileNetV3-Small model recorded the highest Test Accuracy 
of 79% after training for 100 epochs with a learning rate of 0.001. This makes it a strong 
candidate if performance on test data is the main focus of the assessment. However, if 
the priority is more on the model's performance on validation data, then the VGG16 
model, which achieved the highest Validation Accuracy of 78.84% in 100 epochs with a 
learning rate of 0.0001, can be considered as an alternative despite its relatively lower 
Test Accuracy of 23%. Meanwhile, the Resnet50 model shows a good balance of 
performance, with a Training Accuracy of 98.18% and a Validation Accuracy of 72.91%. 
However, its performance on test data was not as optimal as expected, with Test 
Accuracy only reaching 39%. Considering all these aspects, MobileNetV3-Small can be 
classified as the most superior model overall, especially if Test Accuracy is the main 
metric. On the other hand, VGG16 can be chosen if performance stability on validation 

data is preferred. Confusion matrix is used to measure the performance of model 
testing on data sets. The classification confusion matrix results for each 
architecture model in this study can be seen in Figure 6. 
   

   
(a) (b) (c) 

Figure 6. Confusion Matrix; (a) ResNet50, (b) VGG16, (c) MobileNetV3-Small 
 
The Figure 6 shows three confusion matrices comparing the performance of 
ResNet50, VGG16, and MobileNetV3-Small models in rice disease classification. 
In figure (a) showing the performance of ResNet50, it can be seen that the 
model has significant misclassification especially in the Rice Blast and Rice 
Tungro classes, with misclassification rates of 33.3% and 23.68% respectively. 
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ResNet50 also showed an error rate of 25% when trying to classify Leaf Scaled 
as Rice Blast. Meanwhile, the confusion matrix in figure (b) shows that VGG16 
is better at predicting the Rice Blast class. However, there are still some 
misclassifications such as the Shath Blight class which was misclassified by 
33.3% as Leaf Scaled and Rice Blast. Finally, in figure (c), MobileNetV3-Small 
showed the best performance among the three models with high accuracy in 
Brown Spot (64.29%), Rice Blast (72.73%), Rice Tungro (88.23%), and Shath 
Blight (94.29%) classes. However, MobileNetV3-Small still experienced minor 
misclassification in the Leaf Scaled class, where 14.29% of this class was 
misclassified as Rice Blast. Overall, MobileNetV3-Small showed better 
classification ability than the other two models based on the confusion matrix 
shown. 
 
3.2 Discussion 
 
The experimental results reveal important insights into the performance of three 
CNN architectures ResNet50, VGG16, and MobileNetV3-Small in classifying 
rice plant diseases. Based on the accuracy and loss metrics over multiple epochs, 
MobileNetV3-Small emerged as the most effective model when focusing on test 
data accuracy, achieving a Test Accuracy of 79%. This highlights its potential for 
real-world applications where the model's ability to generalize well to unseen data 
is critical. In contrast, the VGG16 model demonstrated the highest Validation 
Accuracy (78.84%), suggesting that it may offer better stability and consistency 
during training but struggled to maintain this performance on test data, as 
reflected in its low-Test Accuracy of 23%. ResNet50, while achieving high 
Training Accuracy, did not perform as well on test data, indicating possible 
overfitting. 
 
The difference in performance between the models can be attributed to several 
factors, including their architectures and how well each model handles the 
complexity of the dataset. MobileNetV3-Small, being a more lightweight and 
efficient model, may have been better suited to the available dataset, enabling it 
to balance accuracy and computational efficiency. On the other hand, VGG16’s 
deeper architecture, while powerful, may have struggled with the dataset's size or 
the learning rate, as evidenced by its strong performance during validation but 
poor generalization during testing. ResNet50's moderate performance across 
both validation and test data suggests that it could be more prone to overfitting, 
which is also evident from its substantial gap between Training Accuracy 
(98.18%) and Test Accuracy (39%). 
 
The confusion matrix results further clarify each model's strengths and 
weaknesses in classifying specific rice disease classes. ResNet50 showed 
significant misclassification in the Rice Blast and Rice Tungro classes, which may 
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indicate that these classes are harder to distinguish with this architecture due to 
overlapping visual features. VGG16, while performing better in predicting the 
Rice Blast class, struggled with misclassifications in the Sheath Blight and Leaf 
Scald classes. This inconsistency suggests that VGG16 may not generalize as well 
across all disease categories, even though it performs well in individual instances. 
In contrast, MobileNetV3-Small demonstrated superior classification across 
most disease classes, with particularly strong performance in Brown Spot, Rice 
Blast, Rice Tungro, and Sheath Blight, which aligns with its high-Test Accuracy. 
 
However, it is important to note that MobileNetV3-Small still experienced some 
misclassification in the Leaf Scald class, where a small percentage was incorrectly 
labeled as Rice Blast. This suggests that while the model outperformed the 
others, there is still room for improvement, particularly in handling more subtle 
distinctions between certain classes. The misclassifications could be further 
reduced through techniques like data augmentation or refining the model's 
architecture to better capture the unique characteristics of the more difficult-to-
classify diseases. 
 
The MobileNetV3-Small model shows the greatest potential for use in rice 
disease classification, particularly for applications that prioritize high accuracy on 
test data. Nevertheless, VGG16 may be preferred in cases where validation 
stability is crucial, despite its lower test performance. ResNet50, although not 
optimal for this specific dataset, may benefit from further tuning or the use of 
more diverse data to prevent overfitting. Future research could explore the 
application of larger or more complex datasets, as well as advanced techniques 
such as transfer learning or ensemble methods, to further improve classification 
performance. 
 
 
4. CONCLUSION 
 
This research has successfully implemented and compared three deep learning 
architectures, namely ResNet50, VGG16, and MobileNetV3-Small, for rice 
disease classification. From the analysis, MobileNetV3-Small showed the best 
performance with the highest testing accuracy of 79%, making it the best choice 
for rice disease detection. Although VGG16 showed the highest validation 
accuracy, its performance on the test data was lower than MobileNetV3-Small. 
The ResNet50 model showed balanced validation accuracy but was less optimal 
on the test data. Overall, this study proves that CNN architecture, especially 
MobileNetV3-Small, is effective in classifying rice diseases and has the potential 
to assist farmers in detecting diseases more quickly and accurately. Further 
research is recommended to use larger datasets and try other model architectures 
to improve classification performance. 
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