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Abstract 
 

Software-defined networks (SDN) have emerged as a promising approach to address the 
limitations of conventional networks. Its architecture can be implemented using either a 
single controller or multiple controllers. Although a single controller is inadequate for 
managing networks, deploying multiple controllers introduces the challenge of controller 
placement (CPP) in a network environment. To address these issues, this study presents a 
Software Defined Networks-Fault-Tolerant Method (SDN-FTM) where, in the event of a 
network failure, the SDN controller automatically reroutes traffic through an alternate, 
pre-configured network path, thereby maintaining uninterrupted service. The proposed 
SDN-FTM was tested and evaluated in real-time using Mininet simulation tools on a real-
life small scale network data from tracking unit department in Walter Sisulu University 
(WSU), with a focus on performance measures such as latency and throughput. From the 
result obtained, the proposed method produced throughput and latency on Ryu with 
2.15m/s and 18408m/s respectively. Furthermore, the findings indicate that Ryu 
controllers generally outperform OpenFlow controllers in terms of throughput, while 
OpenFlow controllers exhibit lower latency. The proposed method demonstrates 
significant improvements in network management by providing a robust solution for 
maintaining high network availability and performance in the presence of faults. 
 
Keywords: Software-Defined Network, Controller, Latency, Throughput, Software-
Defined Network-Fault Tolerance 
 

 
1. INTRODUCTION 
 
Today, many organizations, individuals, and ecosystem applications are required 
to have fast, reliable, and efficient networks that can handle voluminous traffic, 
which can be deployed to large dynamic applications and services [1]. Server 
virtualization networks and networked data centers are increasingly common. In 
modern network infrastructures, ensuring seamless connectivity and high 
performance in complex environments is critical, particularly when network faults 
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occur [2]. SDN has gained significant traction as an innovative paradigm [3]. Its 
architecture, which features a central controller that separates the control and data 
planes, uses high-level abstractions that are communicated to network devices 
through a southbound interface. However, employing a single controller in a 
complex, large-scale network can pose challenges due to the risk of a single point 
of network failure. Additionally, as more switches connect to the controller, its 
performance may degrade and impeding scalability [4].  
 
As the network is anticipated to play a crucial role in the Internet of Things, the 
use of SDN seeks to enhance its usability and applicability [5].  However, 
employing a single controller in a large and complex SDN network can be 
challenging due to the risk of creating a single point of failure [5]. Furthermore, as 
the number of switches linked to a controller increases, the message volume may 
exceed the controller's capacity, hindering SDN scalability. Consequently, multiple 
controllers are deployed in SDN networks to address these issues. However, if 
more than one controller needs to be installed, the appropriate number of switches 
must be allocated to each controller because, upon a packet arriving at a switch's 
ingress port, the flow table is queried based on the information contained in the 
incoming packet header to find a matching flow entry [6].  
 
The packet is routed to the SDN controller if no flow entry is found. Once the 
destination has been determined, the SDN controller adds a flow entry to the 
switch. Because of this, if the switches are not correctly assigned to the controller, 
the delay in this process increases [7] [8]. One important area of research in SDN 
is controller placement; potential solutions involve trying to balance load balancing 
and communication [9]. In [10], the authors started researching the issue of 
controller placement. The literature claims that a crucial problem in an SDN 
environment is controller placement. The placement of controllers has been 
examined by numerous researchers. The issue of controller load in SDN controller 
placement was investigated using a capacitated k-center in research by [11]. The 
use of the propagation latency of the k-center method to deploy a network 
controller to desired locations was introduced [12]. From a medium-sized 
network, the simulation's result indicates that the latency from each node to the 
controller of a single node meets the response time while propagation delay is not 
guaranteed by the approach.  
 
To minimize propagation latency between the switches and the controller and 
improve the throughput of the network, this study employs a Software Defined 
Networks-Fault-Tolerant Method (SDN-FTM) on a real-life small-scale network 
data from the tracking unit department in Walter Sisulu University (WSU) where, 
in the event of a network failure, the SDN controller automatically reroutes traffic 
through an alternate, pre-configured network path, thereby maintaining 
uninterrupted service. Hence, this study aims to optimize network performance in 
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complex environments using software-defined networks [13]  . Drawing upon the 
provided background information, this study raises the following inquiry: How 
can the network in a complex environment be sustained when one network is 
faulty?  The proposed method is developed with the consideration of the above-
mentioned gaps and the associated research question, which led to the following 
contributions,  

1) a network partition concept is introduced to address the issue of controller 
placement and reduce the end-to-end latency. 

2) to reduce controller queuing latency and improve the throughput in multi-
controller placement.  

3) Real network topologies from the Internet Topology are used in extensive 
simulations. 

This paper proceeds as follows. In this section 2, the methodology is covered. The 
results are presented and evaluated in section 3. Section 4 presents the discussion. 
Section 5 concludes the paper. 
 
2. METHODS 
 
This section described the method applied to solve problems of single controller 
placement failure including procedures, and evaluation methods. To achieve the 
research objective stated in Section 1, the flow chart which depict the basic idea 
of the proposed work shown in Figure 1. 

 
 

Figure 1. A basic Flowchart of the proposed SDN-FTM method adapted from 
[14] 

 
Figure 1 shows all the stages that are used in the simulation of this research, these 
stages are further explained in detail in the following sections. 
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2.1 Stage 1: Determination of the Optimal Number of Controller 
 
For the Controller Placement Problem (CPP) in SDN, the process for determining 
the number of controllers in the SDN Mininet, Linux deployment is outlined. The 
network requires a set of (k) controllers to be installed. The intention here is to 
select the best positions from a possible set of controller locations (c), ensuring 
that these positions do not share an edge with certain controls in the switch (s). A 
network split with a high-degree node technique is utilized to identify the critical 
network controllers [15] [16]. The SDN-FTM method for CPP in SDN outlines 
potential nodes for controller positions, aiming to provide the shortest possible 
reaction time for controllers and associated switches while maintaining optimal 
response time.  
 
The method addresses controller placement using a high node degree technique, 
which is repeated to identify suitable controller instances from the switch (s) until 
nodes in set of controller location (C) dominate all nodes in switch (s) or until the 
maximum number of controllers is reached. Then, the independent dominating 
set approach is applied to divide the network into multiple domains, ensuring that 
the controller distribution is as close to the minimal response time as possible. 
This method locates high-degree nodes that act as cluster centers, then creates 
network subgroups for forwarding nodes. The key selection criterion is the node 
with the highest degree and the shortest total distance to other nodes in the 
network. 
 
2.2 Stage 2: Controller Placement 
 
In this simulation, we utilized 1, 2, 3, and 4 controllers alongside 5 switches, using 
a spanning-tree topology. Since one of the objectives of this study is to optimize 
the controller's location, hence there is need to develop an effective placement 
strategy. The control signaling latency is reduced by including the limited capacity 
of the server, the number of controllers needed for fault tolerance, and inter-
controller communication. Each controller manages a different part of the 
network, meaning it only has visibility into a segment of the network. To 
consolidate flow data across the network, each pair of controllers is synchronized, 
which involves two-way communication with at least two messages per 
synchronization.  
 
2.3 Stage 3: Fault Tolerance 
 
Here, the proactive and reactive approaches to failure recovery is utilized. In 
proactive recovery, decision rules are predetermined, while in the reactive method, 
recovery decisions are made based on the situation after a failure occurs. In the 
reactive approach, the controller installs flow-based rules in response to events 
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reported by switches, which can lead to substantial overhead on the switches, 
reducing their performance in terms of latency and throughput. Additional factors 
considered when selecting the best candidate controller during the recovery phase 
include controller load, reliability, and optimization of global or local assignments. 
Our proposed method accounts for reliability by considering the topology of the 
subnetwork connected to each controller, the load, and the failure probability of 
both connected and interconnected links. It selects a more reliable controller to 
reassign the switches of the failed controller accordingly. This reassignment can 
be optimized either globally or locally. Global optimization is achieved if all 
switches managed by the failing controller can be reassigned to another controller 
simultaneously. In contrast, local optimization involves reassigning switches one 
by one, which can increase latency. In our method, switch-controller reassignment 
is handled globally. The optimal placement of multiple controllers minimizes the 
maximum latency between nodes and the controller while maximizing fault 
tolerance in case of controller failures. If the primary controller fails, all nodes 
automatically connect to the nearest available controller in the network. By 
optimizing controller placement and considering worst-case latency scenarios, the 
method enhances network resiliency. Additionally, if the primary route link fails, 
the system detects this and switches to the closest alternate route, ensuring 
network communication continues with acceptable quality. 

 
2.4 Practical Illustration of Proposed Method with Scenarios 
To further evaluate the performance of the proposed method, we implement the 
method on two different scenarios as shown in following sections. 
 
2.4.1 Scenario 1: SDN-FTN on Small Scale Evaluation 
 
We start the simulation by using a small-scale network with OpenFlow and Ryu's 
controllers running the application on all the controllers using the python 
command in Mininet. The command used ensure the specification of only one 
controller in the network that is chosen to play the role of the primary in the 
topology. In the simulation, the four controllers are connected to virtual switches 
which in turn are linked to a host. Using the standard topology throughout the 
simulations and changing the controllers’ type during the evaluation of fault 
tolerance. The controllers are running on the virtual machine using IP range 
127.0.0.1/4 whereby the first address is used to identify the primary controller in 
the network. Different color codes to differentiate the connection between nodes 
in the network as shown in Figure 2.  
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Figure 2. Small-Scale Network Evaluation 

 
In this first simulation as shown in Figure 2, controller C1 is selected as the primary 
(active controller) and is identified and connected to all the other controllers and 
switches in a circular scheme in the network. This circular scheme connection 
enables synchronization so that the nodes in the network can share information 
about each other state in real-time to allow the system’s functionality in the event 
of  a failure. In this case, the scheme allowed controllers to share network updates 
among themselves and if  a decision needed to be taken in the control plane. The 
controllers use the information or packets sent from the switches to provide a 
global view of  the state of  the network, and updates. 
 
In the initial stage of the simulations, the switches flow table is empty, when using 
the Mininet ping test command from the host machine, the virtual switches send a 
packet-in message to the controller to check in the data path, the application 
running on the primary controller responds with the amount of packet transmitted 
and received at the time it takes. As soon as the switches flow table is occupied by 
the correct flow information from all the nodes on the network establish 
communication between them. The illustration of the ping test command in 
Mininet from the host (h1) to the primary controller (C1 with IP address 127.0.0) 
is as shown in Figure 3. 
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Figure 3. The Ping Command Test for Host (h1) to the Primary Controller c0 

in Mininet 
 
2.4.2 Scenario 2: SDN-FTN on Primary Controller Failure 
 
Using the same scenario in Figure 3, with the assumption that the primary 
controller C1 have IP address 127.0.0.1, goes down due to some network fault, 
error, or failure as shown in Figure 4. 
 

 
Figure 4. Primary Controller Failure 

 
In Figure 4, there is a controller fault that occurs when the controller does not 
receive incoming demands from the switches or fails to send messages to respond 
to the switches’ demand or an error caused by the node/Link that occurs when a 
controller receives an incorrect message in response to the switches message the 
network cannot result in total failure. From the above scenario, C1 was playing the 
role of the primary in all Ryu controllers set up topology, after a fault or a controller 
failure, the other controllers (secondary) elect one of them to take over as a new 
primary. This process is done automatically using the control programmable 
capability in Mininet. Utilizing the ovs-vsctl command tools in Mininet the 
designation of the new controller is done as shown in Figure 5. 
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Figure 5. Mininet Setup to Change the Primary Controller 

 
In this scenario, each controller gets the address of the newly elected primary 
controller and shares the information about the network, and the same 
information is stored in the sDB. Referring to a scenario in Figure 5, after C1 is 
dead, C2 takes over the network immediately as the primary controller by using a 
request message, initiated by the OpenFlow to enable the controller to request a 
switch for port statistics using the Ryu.ofproto.ofproto_v1_3_OFPPortStatsRequest 
command in Mininet. Once the selection of the new primary is completed, new 
information is updated and sent to all the nodes in the network; then the detail of 
the new primary is stored in the sDB. The primary controller is denoted by C1 and 
any other controller Cn is secondary. For the simulation in Mininet, we make use 
of hosts as H1 up to Hn in the application plane layer as devices connected to the 
switches. The code shows the new network topology in the first scenario with all 
controllers after the election of the new primary using python code in Mininet in 
Figure 6. 
 

 
Figure 6. Topology after the Election 

controller will be done. 

 

Mininet Script to change the Primary Controller  

 

$ ovs-vsctl set-controller C1 “tcp: 127.0.0.2: 6633” 

$ ovs-vsctl set-controller C2 “tcp: 127.0.0.2: 6633” 

$ ovs-vsctl set-controller C3 “tcp: 127.0.0.2  6633” 

$ ovs-vsctl set-controller C4 “tcp: 127.0.0.2: 6633” 

 

 

election of the new primary using python code in Mininet. 

 

Controller Topology After Election of the new Primary in Mininet 

     

"controllers": [ 

                { 

            "opts": { 

                "controllerProtocol": "TCP", 

                "controllerType": "ref", 

                "hostname": "c1", 

                "remoteIP": "127.0.0.1", 

                "remotePort": 6633 

  "switchStatus":” DOWN”,   //Controller DOWN 

            }, 

            "x": "405.0", 

            "y": "290.0" 

          { 

            "opts": { 

                "controllerProtocol": "TCP", 

                "controllerType": "ref", 

                "hostname": "c2",    //New controller assigned 

                "remoteIP": "127.0.0.2", 

                "remotePort": 6633 

  "switchStatus":” UP”, 

            }, 

            "x": "350.0", 

            "y": "170.0" 

        }, 

        { 

            "opts": { 

                "controllerProtocol": "TCP", 

                "controllerType": "ref", 

                "hostname": "c2", 

                "remoteIP": "127.0.0.3",   //Secondary controller 

                "remotePort": 6633 

  "switchStatus":” UP”, 

            }, 

            "x": "210.0", 

            "y": "215.0" 

 ……………………………………  //Continuity of the code 

 ……………………………………  //Continuity of the code 

        } 

 

 

Figure 7: Topology after the election 
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Using the ping test command in Figure 7 in Mininet from the host machine to the 
virtual switches in the data path, which sends a packet-in message to the controller 
that plays the role of  the new primary, the application running on the new primary 
controller responds by identifying the updated flow tables information from the 
switches and the communication is established between the nodes in the network. 
 

 
Figure 7. The Ping Command Test After the Election of  the New Primary from 

Host (h1) to C2 

 
Once the new topology is created, the virtual switches update the new flow table 
containing new information about the network state. The new details about the 
number of  packets transmitted, received, and lost, as well as the new time, which 
is updated and stored in the sDB.  
 
2.5 Simulation System and Estimation Indexes  
 
To simulate the proposed SDN-FTM in Mininet, two different controllers namely 
OpenFlow and Ryu with various parameters, metrics, and nodes were deployed 
on the network. As discussed above, the standard-based topology for the 
proposed SDN-FTM simulations in Mininet consists of controllers (OpenFlow 
and Ryu), legacy switches, and hosts. All these nodes used the link to establish a 
connection between them on the network as well as specific decryption. That 
identified them. To configure the controller, there is a need to define its type, the 
type of protocol, create its name, IP address as well as the port number used by 
that specific controller. The configuration of OpenFlow SDN-FTF Controllers in 
Mininet up is shown in Figure 8. 
 

 
Figure 8. Controller Setup in Mininet 

Mininet up.  

OpenFlow SDN-FT Controllers Setup in Mininet 

controllers: 

        { 

            "opts": { 

                "controllerProtocol": "TCP", 

                "controllerType": "ref", 

                "hostname": "c1", 

                "remoteIP": "127.0.0.1", 

                "remotePort": 6633, 

  "ControllerStatus":”UP”, 

            }, 

            "x": "355.0", 

            "y": "173.0", 

        } 
 

Fig. 3. Controller setup in Mininet 
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Figure 8 shows a piece of code that represents the basic setup of the OpenFlow 
controllers used in the simulations. In the virtual machine, we have defined the 
protocol for the controller, the type of controller used, the name of the controller, 
the IP addresses assigned to the controller the status of the controller as well as 
the port that the controller is using. The “x” and “y” values represent the 
placement between the controllers in the network. This same procedure is 
repeated several times for each SDN controller setup in the simulation.   
 
As indicated in the previous section, the topology used for this simulation adopts 
a multi-controller scheme with ten (10) SDN controllers, two switches, and two 
hosts attached to them. To set up a host, we specify the hostname (h1, h2, …hn) 
as well as assign IP addresses between the range of 10.0.0.1/2 since we only used 
two hosts. Host h1 was assigned the IP address 10.0.0.1 and host h2 10.0.0.2. all 
these hosts were connected to two legacy switches denoted by s1-eth1 and s2-eth2 
respectively and all useful links to establish a connection between them. To define 
the placement between the nodes on the network we used the “x” and “y” values 
during the simulation. The piece of code illustrating the node setup as shown in 
Figure 9.  
 

 
Figure 9. Controller Setup in Mininet 

 

Node Setup in Mininet 

“hosts”:[ 

{ 

“number”: “1” 

      “opts”:{ 

        “hostname h1 

        “IP” : “10.0.0.1” 

           “nodeNum”: “1” 

           “ached”: “host” 

} 

“x”:”68.7.0 

“y”:”410” 

} 

{ 

“number”: “1” 

      “opts”:{ 

        “hostname h2 

        “IP”: “10.0.0.2” 

           “nodeNum”: “2” 

           “ached”: “host” 

} 

“x”: “227.0 

“y”: “485.0” 

} 

], 

“links”:[] 

“switches”: [ 

{ 

“number”: “1”, 

“opts”:{ 

  “controller” : [], 

“hostname”: “s1”, 

“nodeNum”: “2” 

“switchType”: “legacySwitch” 

“switchStatus”: “UP” 

 

}, 

“x” “347.0” 

“y”: “3310” 

} 
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Among the connected controllers on the network, only one plays the role of the 
primary controller and the others are acting as secondary controllers as shown in 
Figure 9. For this simulation, four controllers were used for the simulation. 
However, the architecture of the SDN-FTM can support small and medium 
networks. This approach was based on the rationale to avoid network failure using 
a single controller and to achieve efficient network management. To address this, 
challenge this research adopted a multiple-controller approach to overcome this 
limitation.  
 
The proposed SDN-FTM design consists of four sets of controllers (C1…Cn) 
interconnected between them so that secondary controllers can have the network 
view from the primary that maintains the network. We have used different colors 
for the link to show the connection between the controllers themselves and the 
switches. These controllers used IP addresses ranging from 172.0.0.1/4 for the 
first scenarios and 172.0.0.1 /10-second ones. In addition, we make use of two 
switches (s1 and s2) that are connected to all the controllers and share the IP 
address of the controller that plays the role of the primary while the IP image of 
all the secondary is also shared with them. The primary controller (c1) shared 
network updates with all the secondary controllers connected to it to alert them 
of any changes on the network using replication. In our case, the primary 
controller is identified as c1, and any chosen secondary controller as Cn.  
For the simulation in Mininet, we make use of hosts denoted as Hn whereby n 
represents the host number in the application plane layer as devices connected to 
the switches as illustrated in Figure 9.  
 
2.6 Performance Evaluation  
 
An appropriate performance measure is chosen to ensure the effectiveness of  the 
proposed method for controller placement. The metrics used to evaluate the 
performance of  the proposed systems are throughput and latency. 
 
Throughput: The total size of information sent each period. In an SDN platform, 
the performance of the controller has a significant impact on throughput and 
latency in the context of the proposed architecture. The throughput of the 
controller determines the rate of flow response, and similarly, the controller’s 
latency performance criterion is determined by the time it takes to respond to a 
flow request. Additionally, since it has an impact on throughput and latency 
performance, the location of the controller (placement) inside the network is 
crucial to the network’s function. 
 
Latency: The total delay in the amount of data transmitted. This also serves as a 
benchmark for any network performance. As a result, latency and throughput were 
appropriate metrics for assessing the proposed system. 
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3. RESULTS AND DISCUSSION 
 
This section presents the simulation setup and the result of simulation 
conduction as shown in the following sections. 
 
3.1. Simulation Setup 
 
The simulation software used in this research is Linux-Ubuntu 20.04 LTS, 64-bit 
operating system, SDN Mininet, Wireshark, Hard Disk 1 T, RAM 8G, Processor: 
Intel® Core™ i7-45705 CPU @ 4.90G, Processor: Intel® Core™ i7-45705 CPU 
@ 4.90G, OpenFlow Controller, Ryu Controller. The simulation parameter used 
in this research is shown in Table 1. 
 

Table 1. Simulation parameters 

Parameter Values Details 

Controller 127.0.0.1………….127.0.0.4 OpenFlow and Ryu 

Nodes s1-eth1, s2-eth2 (Switches) 
Name C0 ……. Cn 

(Controllers) 
h1………...hn (Hosts) 

Nodes are devices connected 
to the network such as hosts, 

controllers, switches 

Protocol TCP 
SSL 

protocol used during the 
simulation. 

IP Base 10.0.0.1……………10.0.0.2 It identified all the nodes 
connected to the network 

OpenFlow 
Ports 

6633, 6634, 6635, 6636 The port functions as an 
interface between the 

swathes and controllers. 

Link the link is used to establish a 
connection between the host, 

switches, and controllers 

different link colors in the 
defined connection between 

different controllers 

 
The nodes detailed used in the simulation are shown in Table 2. 

 
Table 2. Node details 

Node Types Description Details 

Controller A piece of hardware or software 
that controls how data and 

applications move through a 
network and serves as the 
network’s central nervous 

system. 

• controller type: 
OpenFlow and Ryu 

• Protocol IP range 
127.0.0.1/4 
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Node Types Description Details 

Switch A device that helps the 
connection of the controllers 

and hosts. 

• legacy Switch denoted 
by sw1….swn 

Host Workstation connected to the 
legacy switches 

• hostname (h1, h2, …hn) 

• IP addresses range 
10.0.0.1/2 

 
3.2 Simulation 1: Evaluation of Small-Scale Network 
 
The outcomes of  the proposed FTM’s simulated evaluation in a small-scale 
network scenario are shown in this section. As indicated in the previous section 
that the evaluation in the small network makes use of  modified controllers with 
SA. The controllers were evaluated by the latency and throughput performance. 
To measure latency and throughput performance for the SDN-FTM in Mininet, 
we make us of  the standard topology presented in Figure 3 which is based on a 
small-scale Network scenario.  The controller running on the primary switch 
reacted to packet-in messages from the hosts connected to the virtual switches. 
After evaluating the performance of  the controllers (Ryu and OpenFlow). The 
summary in terms of  the runtime and round-trip time that determine the 
controller performances during the evaluation of  the FTM is shown in Table 3.  
 

Table 3. Node details 

Controller ID Throughput (m/s) Latency (m/s) Type Controller 

c1 - - OpenFlow 

c2 1.066 9194 Ryu 

c3 0.985 9207 OpenFlow 

c4 1.084 9214 Ryu 

 
To have a clear picture of the controllers’ performances conducted the simulation 
using small-scale network topology, the throughput and the latency performance 
results of the scenario using both Ryu and OpenFlow controllers are shown in 
Figures 10 and 11 respectively. 
 
From Figure 10, the performance of every single controller during the simulation 
using the proposed FTM in a small-scale network is presented. The controller 
denoted by c1 and c3 were configured as OpenFlow controllers and c2 and c4 as 
Ryu’s controllers. From the outcomes in Figure 10, one can observe that the 
individual controllers’ performances of OpenFlow suffer because of the overhead 
and placement changes due to the selection of the new primary controller after the 
fault has occurred. In the above analysis, the throughput response time for the c2 
and c4 (Ryu’s) controllers is higher than for the c2 (OpenFlow) controllers. This 
implies that during the takeover of the new primary controller, each controller 
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suffers in their performance either higher load balancing or lower load balancing 
that caused their throughput to be high or low. It can be noticed that the 
OpenFlow controller throughput analysis is lower than Ryu’s controllers.  
 

 
Figure 10. Individual Controller Throughput Analysis 

 
The one for c2 and c4 (Ryu’s) controllers is lower than c2 (OpenFlow). This stage 
c1 is considered as a fault and not having any connection in the network.  The 
same phenomenon was also discovered during the evaluation of the latency for 
the SDN-FTM and the controller latency analysis as shown in Figure 11.  

 

 
 

Figure 11. Individual Controller Latency Analysis 
 
Figure 11 shows the latency analysis of individual controllers which indicates that 
the performances of c2 (Ryu) are less than c3 (OpenFlow) and c4 (Ryu) is better 
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than c3 (OpenFlow). This suggests that each controller experienced performance 
issues during the selection of the new primary, nevertheless, their latency is not 
that much higher as compared to the throughput between the two. This implies 
that the network availability after the new primary is taken over is not delayed.  
After a fault was identified in c1, the SA listened to incoming requests using IP 
and port network statistics to identify the controller with less load balancing so 
that it could take the responsibility of the primary controller. The SA’s role is to 
listen on a certain SDN port at an IP address, while the other reaches out to the 
other to establish a connection of sorts. The one in the primary controller forms 
to the listener while the secondary reaches out to respond to the request. The 
values of controller performance in terms of response time (m/s) and latency 
(m/s) are shown in Table 4. 

Table 4. Node details 

Type Controller Throughput (m/s) Latency (m/s) 

OpenFlow 2.15 18408 

Ryu 0.985 9207 

 
Table 4 shows the summary result of the general network performance evaluation 
for the throughput and the latency analysis comparison based on small-scale 
network topology to identify the best topology performance for the proposed 
SDN-FTM from the result is displayed in Figures 12 and 13 respectively.  
 

 
Figure 12. Controller Throughput Comparison 

 
Figure 12 revealed that Ryu's controllers have an increased throughput 
performance compared to the OpenFlow controllers. It is evident that from the 
experiences, the general network throughput analysis for the proposed SDN-FTM 
for small scall network has the best performance results and shows the best 
scalability compared to the other.  It shows that Ryu's controllers for the proposed 
SDN-FTM performance have a throughput analysis twice higher than OpenFlow 
controllers. This indicates that the quantity of data sent in the network small scale 
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for the proposed SDN-FTM is being processed faster in a specific period during 
fault-tolerant compared to OpenFlow controllers. This higher rate of throughput 
shows that messages sent on the network arrive at the destination successfully and 
are being delivered with less delay time. These results are indifferent to the low 
rate of throughput shown in the OpenFlow controllers. Likewise, the general 
network performance evaluation for the latency analysis for the proposed SDN-
FTM is presented in Figure 13. 

 

 
Figure 13. Controller Latency Comparison 

 
Figure 13 shows that the OpenFlow controllers have a low latency rate compared 
to Ryu’s controllers. This low latency demonstrates that in a small-scale network 
for the proposed SDN-FTM, OpenFlow controllers’ responses after failover are 
better than Ryu’s. This is evident that their latency and throughput performance 
is not the same in the small-scale network scenario. 
 
3.3 Comparative Analysis of the Proposed Method with Other Methods in 

Literature 
 
This section compares the performance of the proposed model with other state-
of-the-art SDN models that are currently in use based on the following:  problem 
addressed, method used, network, evaluation metric, and implementation tools, as 
shown in Table 5. 

 
Table 5. Comparative analysis of the proposed method with other related 

methods 

Citation 
Problem 

Addressed 
Method Network Evaluation Metric 

Implementati
on tools 

[17] Scalability 
problems 
due to a 
single 
centralized 

Greedy 
model 

WAN Number of 
required 
controllers, their 
location and load 
balancing  

Simulations: 
MATLAB 
2018a and 
CPLEX 12.6, 
and Internet 

18408

9207

0

5000

10000

15000

20000

25000

Ryu OpenFlow

L
at

en
cy

 (
m

/
s)

Latency Comparison

Ryu

OpenFlow



Journal of Information Systems and Informatics 
Vol. 6, No. 3, September 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1739 

Citation 
Problem 

Addressed 
Method Network Evaluation Metric 

Implementati
on tools 

controller 
in SDNs 

Topology 
Zoo 

[18] Fault-
tolerant 
controller 
placement 
problem  

Heuristic 
algorithm
  

WAN Number 
of controllers, locat
ion of controllers, 
and reliability of 
the 
controller placeme
nt 

Simulations: 
LINUX, 
Mininet, and 
Internet 
Topology 
Zoo 

[19] Multi-
controller 
placement 

Hybrid 
harmonic 
search 
algorithm 
and 
particle 
swarm 
optimizati
on 
algorithm 
(HSA-
PSO) 

WAN Propagation 
latency, Round 
Trip Time (RTT), 
matrix of Time 
Session (TS), delay, 
reliability, and 
throughput 

Simulations: 
CloudsimSD
N network 
simulator, 
Intel (R) 
Core (TM) 
i7-4590S @ 
3.00 GHZ 

[20] Control 
layer is 
completely 
decoupled 
from the 
data layer 
in the 
network 

Binary 
linear 
program
ming 
model 

WAN Controller type, 
place and 
minimum number 
of required 
controllers, 
controller processi
ng capacity, and 
the setup cost  

Simulations: 
Internet2OS
3E 

Propose
d 
method 

Controller 
placement 
and Fault 
tolerance 
in the 
network 
environme
nt 

SDN-
FTM 

WAN number of required 
controllers, their 
location, 
throughput, and 
latency 

Simulations: 
Linux-
Ubuntu 
20.04 LTS, 
Mininet, 
Intel® 
Core™ i7-
45705 CPU 
4.90G, 
OpenFlow 
Controller, 
Ryu 
Controller 

 
Relying on a single centralized controller in Software-Defined Networks can lead 
to scalability issues introduced in [17], to enhance scalability and maintain low 

https://www.sciencedirect.com/topics/computer-science/heuristic-algorithm
https://www.sciencedirect.com/topics/computer-science/heuristic-algorithm
https://www.sciencedirect.com/topics/computer-science/processing-capacity
https://www.sciencedirect.com/topics/computer-science/processing-capacity
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latency in wide area networks, the use of multiple controllers is recommended. 
The approach determined the optimal number of controllers, and their placement, 
and ensured effective load balancing among them to prevent overloading by using 
greedy algorithms. Authors in [18] addressed the issue of fault-tolerant controller 
placement problem with a heuristic algorithm that calculates placements with the 
necessary level of reliability. Also, research in [19] solved the issue of Multi-
controller placement in SDN by utilizing a Hybrid harmonic search algorithm and 
particle swarm optimization algorithm (HSA-PSO) on WAN. The implementation 
evaluation was tested on propagation latency, Round Trip Time (RTT), matrix of 
Time Session (TS), delay, reliability, and throughput. Although the proposed 
problem addressed is similar to research done in [19], however, the proposed 
SDN-FTM method has the advantage of optimizing the network in a situation 
when a single network failure occurs which consequently improves the scalability 
and throughput of the network [21] [22]. 
 
4. CONCLUSION 
 
In conclusion, this study presents the design, evaluation, and simulation of the 
SDN-Fault Tolerance Model (FTM) using a small-scale network scenario. The 
proposed SDN-FTM was tested and evaluated in real-time using Mininet 
simulation tools, with a focus on performance measures such as latency and 
throughput. Key findings indicate that Ryu controllers generally outperform 
OpenFlow controllers in terms of throughput, while OpenFlow controllers exhibit 
lower latency. This suggests that while Ryu controllers can handle more data 
efficiently, OpenFlow controllers may be more responsive in terms of 
communication delays. The comparative analysis across small, medium, and large-
scale network scenarios reveals consistent trends in performance, with Ryu 
controllers maintaining higher throughput and OpenFlow controllers showing 
lower latency across different network scales. These results underscore the 
scalability and robustness of the proposed SDN-FTM architecture. Despite the 
promising results, the study is limited by the scope of the network scenarios tested 
and the specific simulation environment used. Future research could explore 
larger-scale networks, additional performance metrics, and further refinement of 
the fault tolerance mechanisms. 
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