

Journal of Information Systems and Informatics

Vol. 6, No. 3, September 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935

DOI: 10.51519/journalisi.v6i3.818 Published By DRPM-UBD

1723

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Optimization of Network Performance in Complex
Environments with Software Defined Networks

Munienge Mbodila1, Omobayo Ayokunle Esan2,

Femi Abiodun Elegbeleye3

1,2Departement of Network and Support, Walter Sisulu University, East London, South Africa

3Departement Business Application and Developments, Walter Sisulu University, East London,
South Africa

Email: 1mmbodila@wsu.ac.za, 2oesan@wsu.ac.za, 3felegbeleye@wsu.ac.za

Abstract

Software-defined networks (SDN) have emerged as a promising approach to address the
limitations of conventional networks. Its architecture can be implemented using either a
single controller or multiple controllers. Although a single controller is inadequate for
managing networks, deploying multiple controllers introduces the challenge of controller
placement (CPP) in a network environment. To address these issues, this study presents a
Software Defined Networks-Fault-Tolerant Method (SDN-FTM) where, in the event of a
network failure, the SDN controller automatically reroutes traffic through an alternate,
pre-configured network path, thereby maintaining uninterrupted service. The proposed
SDN-FTM was tested and evaluated in real-time using Mininet simulation tools on a real-
life small scale network data from tracking unit department in Walter Sisulu University
(WSU), with a focus on performance measures such as latency and throughput. From the
result obtained, the proposed method produced throughput and latency on Ryu with
2.15m/s and 18408m/s respectively. Furthermore, the findings indicate that Ryu
controllers generally outperform OpenFlow controllers in terms of throughput, while
OpenFlow controllers exhibit lower latency. The proposed method demonstrates
significant improvements in network management by providing a robust solution for
maintaining high network availability and performance in the presence of faults.

Keywords: Software-Defined Network, Controller, Latency, Throughput, Software-
Defined Network-Fault Tolerance

1. INTRODUCTION

Today, many organizations, individuals, and ecosystem applications are required
to have fast, reliable, and efficient networks that can handle voluminous traffic,
which can be deployed to large dynamic applications and services [1]. Server
virtualization networks and networked data centers are increasingly common. In
modern network infrastructures, ensuring seamless connectivity and high
performance in complex environments is critical, particularly when network faults

https://doi.org/10.51519/journalisi.v6i2.759
https://doi.org/10.51519/journalisi.v6i3.818
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1724 | Optimization of Network Performance in Complex Environments with Software

occur [2]. SDN has gained significant traction as an innovative paradigm [3]. Its
architecture, which features a central controller that separates the control and data
planes, uses high-level abstractions that are communicated to network devices
through a southbound interface. However, employing a single controller in a
complex, large-scale network can pose challenges due to the risk of a single point
of network failure. Additionally, as more switches connect to the controller, its
performance may degrade and impeding scalability [4].

As the network is anticipated to play a crucial role in the Internet of Things, the
use of SDN seeks to enhance its usability and applicability [5]. However,
employing a single controller in a large and complex SDN network can be
challenging due to the risk of creating a single point of failure [5]. Furthermore, as
the number of switches linked to a controller increases, the message volume may
exceed the controller's capacity, hindering SDN scalability. Consequently, multiple
controllers are deployed in SDN networks to address these issues. However, if
more than one controller needs to be installed, the appropriate number of switches
must be allocated to each controller because, upon a packet arriving at a switch's
ingress port, the flow table is queried based on the information contained in the
incoming packet header to find a matching flow entry [6].

The packet is routed to the SDN controller if no flow entry is found. Once the
destination has been determined, the SDN controller adds a flow entry to the
switch. Because of this, if the switches are not correctly assigned to the controller,
the delay in this process increases [7] [8]. One important area of research in SDN
is controller placement; potential solutions involve trying to balance load balancing
and communication [9]. In [10], the authors started researching the issue of
controller placement. The literature claims that a crucial problem in an SDN
environment is controller placement. The placement of controllers has been
examined by numerous researchers. The issue of controller load in SDN controller
placement was investigated using a capacitated k-center in research by [11]. The
use of the propagation latency of the k-center method to deploy a network
controller to desired locations was introduced [12]. From a medium-sized
network, the simulation's result indicates that the latency from each node to the
controller of a single node meets the response time while propagation delay is not
guaranteed by the approach.

To minimize propagation latency between the switches and the controller and
improve the throughput of the network, this study employs a Software Defined
Networks-Fault-Tolerant Method (SDN-FTM) on a real-life small-scale network
data from the tracking unit department in Walter Sisulu University (WSU) where,
in the event of a network failure, the SDN controller automatically reroutes traffic
through an alternate, pre-configured network path, thereby maintaining
uninterrupted service. Hence, this study aims to optimize network performance in

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1725

complex environments using software-defined networks [13] . Drawing upon the
provided background information, this study raises the following inquiry: How
can the network in a complex environment be sustained when one network is
faulty? The proposed method is developed with the consideration of the above-
mentioned gaps and the associated research question, which led to the following
contributions,

1) a network partition concept is introduced to address the issue of controller
placement and reduce the end-to-end latency.

2) to reduce controller queuing latency and improve the throughput in multi-
controller placement.

3) Real network topologies from the Internet Topology are used in extensive
simulations.

This paper proceeds as follows. In this section 2, the methodology is covered. The
results are presented and evaluated in section 3. Section 4 presents the discussion.
Section 5 concludes the paper.

2. METHODS

This section described the method applied to solve problems of single controller
placement failure including procedures, and evaluation methods. To achieve the
research objective stated in Section 1, the flow chart which depict the basic idea
of the proposed work shown in Figure 1.

Figure 1. A basic Flowchart of the proposed SDN-FTM method adapted from
[14]

Figure 1 shows all the stages that are used in the simulation of this research, these
stages are further explained in detail in the following sections.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1726 | Optimization of Network Performance in Complex Environments with Software

2.1 Stage 1: Determination of the Optimal Number of Controller

For the Controller Placement Problem (CPP) in SDN, the process for determining
the number of controllers in the SDN Mininet, Linux deployment is outlined. The
network requires a set of (k) controllers to be installed. The intention here is to
select the best positions from a possible set of controller locations (c), ensuring
that these positions do not share an edge with certain controls in the switch (s). A
network split with a high-degree node technique is utilized to identify the critical
network controllers [15] [16]. The SDN-FTM method for CPP in SDN outlines
potential nodes for controller positions, aiming to provide the shortest possible
reaction time for controllers and associated switches while maintaining optimal
response time.

The method addresses controller placement using a high node degree technique,
which is repeated to identify suitable controller instances from the switch (s) until
nodes in set of controller location (C) dominate all nodes in switch (s) or until the
maximum number of controllers is reached. Then, the independent dominating
set approach is applied to divide the network into multiple domains, ensuring that
the controller distribution is as close to the minimal response time as possible.
This method locates high-degree nodes that act as cluster centers, then creates
network subgroups for forwarding nodes. The key selection criterion is the node
with the highest degree and the shortest total distance to other nodes in the
network.

2.2 Stage 2: Controller Placement

In this simulation, we utilized 1, 2, 3, and 4 controllers alongside 5 switches, using
a spanning-tree topology. Since one of the objectives of this study is to optimize
the controller's location, hence there is need to develop an effective placement
strategy. The control signaling latency is reduced by including the limited capacity
of the server, the number of controllers needed for fault tolerance, and inter-
controller communication. Each controller manages a different part of the
network, meaning it only has visibility into a segment of the network. To
consolidate flow data across the network, each pair of controllers is synchronized,
which involves two-way communication with at least two messages per
synchronization.

2.3 Stage 3: Fault Tolerance

Here, the proactive and reactive approaches to failure recovery is utilized. In
proactive recovery, decision rules are predetermined, while in the reactive method,
recovery decisions are made based on the situation after a failure occurs. In the
reactive approach, the controller installs flow-based rules in response to events

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1727

reported by switches, which can lead to substantial overhead on the switches,
reducing their performance in terms of latency and throughput. Additional factors
considered when selecting the best candidate controller during the recovery phase
include controller load, reliability, and optimization of global or local assignments.
Our proposed method accounts for reliability by considering the topology of the
subnetwork connected to each controller, the load, and the failure probability of
both connected and interconnected links. It selects a more reliable controller to
reassign the switches of the failed controller accordingly. This reassignment can
be optimized either globally or locally. Global optimization is achieved if all
switches managed by the failing controller can be reassigned to another controller
simultaneously. In contrast, local optimization involves reassigning switches one
by one, which can increase latency. In our method, switch-controller reassignment
is handled globally. The optimal placement of multiple controllers minimizes the
maximum latency between nodes and the controller while maximizing fault
tolerance in case of controller failures. If the primary controller fails, all nodes
automatically connect to the nearest available controller in the network. By
optimizing controller placement and considering worst-case latency scenarios, the
method enhances network resiliency. Additionally, if the primary route link fails,
the system detects this and switches to the closest alternate route, ensuring
network communication continues with acceptable quality.

2.4 Practical Illustration of Proposed Method with Scenarios
To further evaluate the performance of the proposed method, we implement the
method on two different scenarios as shown in following sections.

2.4.1 Scenario 1: SDN-FTN on Small Scale Evaluation

We start the simulation by using a small-scale network with OpenFlow and Ryu's
controllers running the application on all the controllers using the python
command in Mininet. The command used ensure the specification of only one
controller in the network that is chosen to play the role of the primary in the
topology. In the simulation, the four controllers are connected to virtual switches
which in turn are linked to a host. Using the standard topology throughout the
simulations and changing the controllers’ type during the evaluation of fault
tolerance. The controllers are running on the virtual machine using IP range
127.0.0.1/4 whereby the first address is used to identify the primary controller in
the network. Different color codes to differentiate the connection between nodes
in the network as shown in Figure 2.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1728 | Optimization of Network Performance in Complex Environments with Software

Figure 2. Small-Scale Network Evaluation

In this first simulation as shown in Figure 2, controller C1 is selected as the primary
(active controller) and is identified and connected to all the other controllers and
switches in a circular scheme in the network. This circular scheme connection
enables synchronization so that the nodes in the network can share information
about each other state in real-time to allow the system’s functionality in the event
of a failure. In this case, the scheme allowed controllers to share network updates
among themselves and if a decision needed to be taken in the control plane. The
controllers use the information or packets sent from the switches to provide a
global view of the state of the network, and updates.

In the initial stage of the simulations, the switches flow table is empty, when using
the Mininet ping test command from the host machine, the virtual switches send a
packet-in message to the controller to check in the data path, the application
running on the primary controller responds with the amount of packet transmitted
and received at the time it takes. As soon as the switches flow table is occupied by
the correct flow information from all the nodes on the network establish
communication between them. The illustration of the ping test command in
Mininet from the host (h1) to the primary controller (C1 with IP address 127.0.0)
is as shown in Figure 3.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1729

Figure 3. The Ping Command Test for Host (h1) to the Primary Controller c0

in Mininet

2.4.2 Scenario 2: SDN-FTN on Primary Controller Failure

Using the same scenario in Figure 3, with the assumption that the primary
controller C1 have IP address 127.0.0.1, goes down due to some network fault,
error, or failure as shown in Figure 4.

Figure 4. Primary Controller Failure

In Figure 4, there is a controller fault that occurs when the controller does not
receive incoming demands from the switches or fails to send messages to respond
to the switches’ demand or an error caused by the node/Link that occurs when a
controller receives an incorrect message in response to the switches message the
network cannot result in total failure. From the above scenario, C1 was playing the
role of the primary in all Ryu controllers set up topology, after a fault or a controller
failure, the other controllers (secondary) elect one of them to take over as a new
primary. This process is done automatically using the control programmable
capability in Mininet. Utilizing the ovs-vsctl command tools in Mininet the
designation of the new controller is done as shown in Figure 5.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1730 | Optimization of Network Performance in Complex Environments with Software

Figure 5. Mininet Setup to Change the Primary Controller

In this scenario, each controller gets the address of the newly elected primary
controller and shares the information about the network, and the same
information is stored in the sDB. Referring to a scenario in Figure 5, after C1 is
dead, C2 takes over the network immediately as the primary controller by using a
request message, initiated by the OpenFlow to enable the controller to request a
switch for port statistics using the Ryu.ofproto.ofproto_v1_3_OFPPortStatsRequest
command in Mininet. Once the selection of the new primary is completed, new
information is updated and sent to all the nodes in the network; then the detail of
the new primary is stored in the sDB. The primary controller is denoted by C1 and
any other controller Cn is secondary. For the simulation in Mininet, we make use
of hosts as H1 up to Hn in the application plane layer as devices connected to the
switches. The code shows the new network topology in the first scenario with all
controllers after the election of the new primary using python code in Mininet in
Figure 6.

Figure 6. Topology after the Election

controller will be done.

Mininet Script to change the Primary Controller

$ ovs-vsctl set-controller C1 “tcp: 127.0.0.2: 6633”

$ ovs-vsctl set-controller C2 “tcp: 127.0.0.2: 6633”

$ ovs-vsctl set-controller C3 “tcp: 127.0.0.2 6633”

$ ovs-vsctl set-controller C4 “tcp: 127.0.0.2: 6633”

election of the new primary using python code in Mininet.

Controller Topology After Election of the new Primary in Mininet

"controllers": [

 {

 "opts": {

 "controllerProtocol": "TCP",

 "controllerType": "ref",

 "hostname": "c1",

 "remoteIP": "127.0.0.1",

 "remotePort": 6633

 "switchStatus":” DOWN”, //Controller DOWN

 },

 "x": "405.0",

 "y": "290.0"

 {

 "opts": {

 "controllerProtocol": "TCP",

 "controllerType": "ref",

 "hostname": "c2", //New controller assigned

 "remoteIP": "127.0.0.2",

 "remotePort": 6633

 "switchStatus":” UP”,

 },

 "x": "350.0",

 "y": "170.0"

 },

 {

 "opts": {

 "controllerProtocol": "TCP",

 "controllerType": "ref",

 "hostname": "c2",

 "remoteIP": "127.0.0.3", //Secondary controller

 "remotePort": 6633

 "switchStatus":” UP”,

 },

 "x": "210.0",

 "y": "215.0"

 …………………………………… //Continuity of the code

 …………………………………… //Continuity of the code

 }

Figure 7: Topology after the election

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1731

Using the ping test command in Figure 7 in Mininet from the host machine to the
virtual switches in the data path, which sends a packet-in message to the controller
that plays the role of the new primary, the application running on the new primary
controller responds by identifying the updated flow tables information from the
switches and the communication is established between the nodes in the network.

Figure 7. The Ping Command Test After the Election of the New Primary from

Host (h1) to C2

Once the new topology is created, the virtual switches update the new flow table
containing new information about the network state. The new details about the
number of packets transmitted, received, and lost, as well as the new time, which
is updated and stored in the sDB.

2.5 Simulation System and Estimation Indexes

To simulate the proposed SDN-FTM in Mininet, two different controllers namely
OpenFlow and Ryu with various parameters, metrics, and nodes were deployed
on the network. As discussed above, the standard-based topology for the
proposed SDN-FTM simulations in Mininet consists of controllers (OpenFlow
and Ryu), legacy switches, and hosts. All these nodes used the link to establish a
connection between them on the network as well as specific decryption. That
identified them. To configure the controller, there is a need to define its type, the
type of protocol, create its name, IP address as well as the port number used by
that specific controller. The configuration of OpenFlow SDN-FTF Controllers in
Mininet up is shown in Figure 8.

Figure 8. Controller Setup in Mininet

Mininet up.

OpenFlow SDN-FT Controllers Setup in Mininet

controllers:

 {

 "opts": {

 "controllerProtocol": "TCP",

 "controllerType": "ref",

 "hostname": "c1",

 "remoteIP": "127.0.0.1",

 "remotePort": 6633,

 "ControllerStatus":”UP”,

 },

 "x": "355.0",

 "y": "173.0",

 }

Fig. 3. Controller setup in Mininet

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1732 | Optimization of Network Performance in Complex Environments with Software

Figure 8 shows a piece of code that represents the basic setup of the OpenFlow
controllers used in the simulations. In the virtual machine, we have defined the
protocol for the controller, the type of controller used, the name of the controller,
the IP addresses assigned to the controller the status of the controller as well as
the port that the controller is using. The “x” and “y” values represent the
placement between the controllers in the network. This same procedure is
repeated several times for each SDN controller setup in the simulation.

As indicated in the previous section, the topology used for this simulation adopts
a multi-controller scheme with ten (10) SDN controllers, two switches, and two
hosts attached to them. To set up a host, we specify the hostname (h1, h2, …hn)
as well as assign IP addresses between the range of 10.0.0.1/2 since we only used
two hosts. Host h1 was assigned the IP address 10.0.0.1 and host h2 10.0.0.2. all
these hosts were connected to two legacy switches denoted by s1-eth1 and s2-eth2
respectively and all useful links to establish a connection between them. To define
the placement between the nodes on the network we used the “x” and “y” values
during the simulation. The piece of code illustrating the node setup as shown in
Figure 9.

Figure 9. Controller Setup in Mininet

Node Setup in Mininet

“hosts”:[

{

“number”: “1”

 “opts”:{

 “hostname h1

 “IP” : “10.0.0.1”

 “nodeNum”: “1”

 “ached”: “host”

}

“x”:”68.7.0

“y”:”410”

}

{

“number”: “1”

 “opts”:{

 “hostname h2

 “IP”: “10.0.0.2”

 “nodeNum”: “2”

 “ached”: “host”

}

“x”: “227.0

“y”: “485.0”

}

],

“links”:[]

“switches”: [

{

“number”: “1”,

“opts”:{

 “controller” : [],

“hostname”: “s1”,

“nodeNum”: “2”

“switchType”: “legacySwitch”

“switchStatus”: “UP”

},

“x” “347.0”

“y”: “3310”

}

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1733

Among the connected controllers on the network, only one plays the role of the
primary controller and the others are acting as secondary controllers as shown in
Figure 9. For this simulation, four controllers were used for the simulation.
However, the architecture of the SDN-FTM can support small and medium
networks. This approach was based on the rationale to avoid network failure using
a single controller and to achieve efficient network management. To address this,
challenge this research adopted a multiple-controller approach to overcome this
limitation.

The proposed SDN-FTM design consists of four sets of controllers (C1…Cn)
interconnected between them so that secondary controllers can have the network
view from the primary that maintains the network. We have used different colors
for the link to show the connection between the controllers themselves and the
switches. These controllers used IP addresses ranging from 172.0.0.1/4 for the
first scenarios and 172.0.0.1 /10-second ones. In addition, we make use of two
switches (s1 and s2) that are connected to all the controllers and share the IP
address of the controller that plays the role of the primary while the IP image of
all the secondary is also shared with them. The primary controller (c1) shared
network updates with all the secondary controllers connected to it to alert them
of any changes on the network using replication. In our case, the primary
controller is identified as c1, and any chosen secondary controller as Cn.
For the simulation in Mininet, we make use of hosts denoted as Hn whereby n
represents the host number in the application plane layer as devices connected to
the switches as illustrated in Figure 9.

2.6 Performance Evaluation

An appropriate performance measure is chosen to ensure the effectiveness of the
proposed method for controller placement. The metrics used to evaluate the
performance of the proposed systems are throughput and latency.

Throughput: The total size of information sent each period. In an SDN platform,
the performance of the controller has a significant impact on throughput and
latency in the context of the proposed architecture. The throughput of the
controller determines the rate of flow response, and similarly, the controller’s
latency performance criterion is determined by the time it takes to respond to a
flow request. Additionally, since it has an impact on throughput and latency
performance, the location of the controller (placement) inside the network is
crucial to the network’s function.

Latency: The total delay in the amount of data transmitted. This also serves as a
benchmark for any network performance. As a result, latency and throughput were
appropriate metrics for assessing the proposed system.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1734 | Optimization of Network Performance in Complex Environments with Software

3. RESULTS AND DISCUSSION

This section presents the simulation setup and the result of simulation
conduction as shown in the following sections.

3.1. Simulation Setup

The simulation software used in this research is Linux-Ubuntu 20.04 LTS, 64-bit
operating system, SDN Mininet, Wireshark, Hard Disk 1 T, RAM 8G, Processor:
Intel® Core™ i7-45705 CPU @ 4.90G, Processor: Intel® Core™ i7-45705 CPU
@ 4.90G, OpenFlow Controller, Ryu Controller. The simulation parameter used
in this research is shown in Table 1.

Table 1. Simulation parameters

Parameter Values Details

Controller 127.0.0.1………….127.0.0.4 OpenFlow and Ryu

Nodes s1-eth1, s2-eth2 (Switches)
Name C0 ……. Cn

(Controllers)
h1………...hn (Hosts)

Nodes are devices connected
to the network such as hosts,

controllers, switches

Protocol TCP
SSL

protocol used during the
simulation.

IP Base 10.0.0.1……………10.0.0.2 It identified all the nodes
connected to the network

OpenFlow
Ports

6633, 6634, 6635, 6636 The port functions as an
interface between the

swathes and controllers.

Link the link is used to establish a
connection between the host,

switches, and controllers

different link colors in the
defined connection between

different controllers

The nodes detailed used in the simulation are shown in Table 2.

Table 2. Node details

Node Types Description Details

Controller A piece of hardware or software
that controls how data and

applications move through a
network and serves as the
network’s central nervous

system.

• controller type:
OpenFlow and Ryu

• Protocol IP range
127.0.0.1/4

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1735

Node Types Description Details

Switch A device that helps the
connection of the controllers

and hosts.

• legacy Switch denoted
by sw1….swn

Host Workstation connected to the
legacy switches

• hostname (h1, h2, …hn)

• IP addresses range
10.0.0.1/2

3.2 Simulation 1: Evaluation of Small-Scale Network

The outcomes of the proposed FTM’s simulated evaluation in a small-scale
network scenario are shown in this section. As indicated in the previous section
that the evaluation in the small network makes use of modified controllers with
SA. The controllers were evaluated by the latency and throughput performance.
To measure latency and throughput performance for the SDN-FTM in Mininet,
we make us of the standard topology presented in Figure 3 which is based on a
small-scale Network scenario. The controller running on the primary switch
reacted to packet-in messages from the hosts connected to the virtual switches.
After evaluating the performance of the controllers (Ryu and OpenFlow). The
summary in terms of the runtime and round-trip time that determine the
controller performances during the evaluation of the FTM is shown in Table 3.

Table 3. Node details

Controller ID Throughput (m/s) Latency (m/s) Type Controller

c1 - - OpenFlow

c2 1.066 9194 Ryu

c3 0.985 9207 OpenFlow

c4 1.084 9214 Ryu

To have a clear picture of the controllers’ performances conducted the simulation
using small-scale network topology, the throughput and the latency performance
results of the scenario using both Ryu and OpenFlow controllers are shown in
Figures 10 and 11 respectively.

From Figure 10, the performance of every single controller during the simulation
using the proposed FTM in a small-scale network is presented. The controller
denoted by c1 and c3 were configured as OpenFlow controllers and c2 and c4 as
Ryu’s controllers. From the outcomes in Figure 10, one can observe that the
individual controllers’ performances of OpenFlow suffer because of the overhead
and placement changes due to the selection of the new primary controller after the
fault has occurred. In the above analysis, the throughput response time for the c2
and c4 (Ryu’s) controllers is higher than for the c2 (OpenFlow) controllers. This
implies that during the takeover of the new primary controller, each controller

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1736 | Optimization of Network Performance in Complex Environments with Software

suffers in their performance either higher load balancing or lower load balancing
that caused their throughput to be high or low. It can be noticed that the
OpenFlow controller throughput analysis is lower than Ryu’s controllers.

Figure 10. Individual Controller Throughput Analysis

The one for c2 and c4 (Ryu’s) controllers is lower than c2 (OpenFlow). This stage
c1 is considered as a fault and not having any connection in the network. The
same phenomenon was also discovered during the evaluation of the latency for
the SDN-FTM and the controller latency analysis as shown in Figure 11.

Figure 11. Individual Controller Latency Analysis

Figure 11 shows the latency analysis of individual controllers which indicates that
the performances of c2 (Ryu) are less than c3 (OpenFlow) and c4 (Ryu) is better

c1 c2 c3 c4

Series1 0 1,066 0,985 1,084

-0,5

0

0,5

1

1,5

R
es

p
o

n
se

s
T

im
e

(m
/

s)

Throughput

c1

c2

c3

c4

0

9194 9207 9214

-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

c1 c2 c3 c4

L
at

en
cy

 (
m

/
s)

Latency

c1

c2

c3

c4

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1737

than c3 (OpenFlow). This suggests that each controller experienced performance
issues during the selection of the new primary, nevertheless, their latency is not
that much higher as compared to the throughput between the two. This implies
that the network availability after the new primary is taken over is not delayed.
After a fault was identified in c1, the SA listened to incoming requests using IP
and port network statistics to identify the controller with less load balancing so
that it could take the responsibility of the primary controller. The SA’s role is to
listen on a certain SDN port at an IP address, while the other reaches out to the
other to establish a connection of sorts. The one in the primary controller forms
to the listener while the secondary reaches out to respond to the request. The
values of controller performance in terms of response time (m/s) and latency
(m/s) are shown in Table 4.

Table 4. Node details

Type Controller Throughput (m/s) Latency (m/s)

OpenFlow 2.15 18408

Ryu 0.985 9207

Table 4 shows the summary result of the general network performance evaluation
for the throughput and the latency analysis comparison based on small-scale
network topology to identify the best topology performance for the proposed
SDN-FTM from the result is displayed in Figures 12 and 13 respectively.

Figure 12. Controller Throughput Comparison

Figure 12 revealed that Ryu's controllers have an increased throughput
performance compared to the OpenFlow controllers. It is evident that from the
experiences, the general network throughput analysis for the proposed SDN-FTM
for small scall network has the best performance results and shows the best
scalability compared to the other. It shows that Ryu's controllers for the proposed
SDN-FTM performance have a throughput analysis twice higher than OpenFlow
controllers. This indicates that the quantity of data sent in the network small scale

2,15

0,985

0

1

2

3

Ryu OpenFlowR
es

p
o

n
se

s
T

im
e

(m
/
s)

Throughput Comparison

Ryu

OpenFlow

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1738 | Optimization of Network Performance in Complex Environments with Software

for the proposed SDN-FTM is being processed faster in a specific period during
fault-tolerant compared to OpenFlow controllers. This higher rate of throughput
shows that messages sent on the network arrive at the destination successfully and
are being delivered with less delay time. These results are indifferent to the low
rate of throughput shown in the OpenFlow controllers. Likewise, the general
network performance evaluation for the latency analysis for the proposed SDN-
FTM is presented in Figure 13.

Figure 13. Controller Latency Comparison

Figure 13 shows that the OpenFlow controllers have a low latency rate compared
to Ryu’s controllers. This low latency demonstrates that in a small-scale network
for the proposed SDN-FTM, OpenFlow controllers’ responses after failover are
better than Ryu’s. This is evident that their latency and throughput performance
is not the same in the small-scale network scenario.

3.3 Comparative Analysis of the Proposed Method with Other Methods in

Literature

This section compares the performance of the proposed model with other state-
of-the-art SDN models that are currently in use based on the following: problem
addressed, method used, network, evaluation metric, and implementation tools, as
shown in Table 5.

Table 5. Comparative analysis of the proposed method with other related

methods

Citation
Problem

Addressed
Method Network Evaluation Metric

Implementati
on tools

[17] Scalability
problems
due to a
single
centralized

Greedy
model

WAN Number of
required
controllers, their
location and load
balancing

Simulations:
MATLAB
2018a and
CPLEX 12.6,
and Internet

18408

9207

0

5000

10000

15000

20000

25000

Ryu OpenFlow

L
at

en
cy

 (
m

/
s)

Latency Comparison

Ryu

OpenFlow

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1739

Citation
Problem

Addressed
Method Network Evaluation Metric

Implementati
on tools

controller
in SDNs

Topology
Zoo

[18] Fault-
tolerant
controller
placement
problem

Heuristic
algorithm

WAN Number
of controllers, locat
ion of controllers,
and reliability of
the
controller placeme
nt

Simulations:
LINUX,
Mininet, and
Internet
Topology
Zoo

[19] Multi-
controller
placement

Hybrid
harmonic
search
algorithm
and
particle
swarm
optimizati
on
algorithm
(HSA-
PSO)

WAN Propagation
latency, Round
Trip Time (RTT),
matrix of Time
Session (TS), delay,
reliability, and
throughput

Simulations:
CloudsimSD
N network
simulator,
Intel (R)
Core (TM)
i7-4590S @
3.00 GHZ

[20] Control
layer is
completely
decoupled
from the
data layer
in the
network

Binary
linear
program
ming
model

WAN Controller type,
place and
minimum number
of required
controllers,
controller processi
ng capacity, and
the setup cost

Simulations:
Internet2OS
3E

Propose
d
method

Controller
placement
and Fault
tolerance
in the
network
environme
nt

SDN-
FTM

WAN number of required
controllers, their
location,
throughput, and
latency

Simulations:
Linux-
Ubuntu
20.04 LTS,
Mininet,
Intel®
Core™ i7-
45705 CPU
4.90G,
OpenFlow
Controller,
Ryu
Controller

Relying on a single centralized controller in Software-Defined Networks can lead
to scalability issues introduced in [17], to enhance scalability and maintain low

https://www.sciencedirect.com/topics/computer-science/heuristic-algorithm
https://www.sciencedirect.com/topics/computer-science/heuristic-algorithm
https://www.sciencedirect.com/topics/computer-science/processing-capacity
https://www.sciencedirect.com/topics/computer-science/processing-capacity

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1740 | Optimization of Network Performance in Complex Environments with Software

latency in wide area networks, the use of multiple controllers is recommended.
The approach determined the optimal number of controllers, and their placement,
and ensured effective load balancing among them to prevent overloading by using
greedy algorithms. Authors in [18] addressed the issue of fault-tolerant controller
placement problem with a heuristic algorithm that calculates placements with the
necessary level of reliability. Also, research in [19] solved the issue of Multi-
controller placement in SDN by utilizing a Hybrid harmonic search algorithm and
particle swarm optimization algorithm (HSA-PSO) on WAN. The implementation
evaluation was tested on propagation latency, Round Trip Time (RTT), matrix of
Time Session (TS), delay, reliability, and throughput. Although the proposed
problem addressed is similar to research done in [19], however, the proposed
SDN-FTM method has the advantage of optimizing the network in a situation
when a single network failure occurs which consequently improves the scalability
and throughput of the network [21] [22].

4. CONCLUSION

In conclusion, this study presents the design, evaluation, and simulation of the
SDN-Fault Tolerance Model (FTM) using a small-scale network scenario. The
proposed SDN-FTM was tested and evaluated in real-time using Mininet
simulation tools, with a focus on performance measures such as latency and
throughput. Key findings indicate that Ryu controllers generally outperform
OpenFlow controllers in terms of throughput, while OpenFlow controllers exhibit
lower latency. This suggests that while Ryu controllers can handle more data
efficiently, OpenFlow controllers may be more responsive in terms of
communication delays. The comparative analysis across small, medium, and large-
scale network scenarios reveals consistent trends in performance, with Ryu
controllers maintaining higher throughput and OpenFlow controllers showing
lower latency across different network scales. These results underscore the
scalability and robustness of the proposed SDN-FTM architecture. Despite the
promising results, the study is limited by the scope of the network scenarios tested
and the specific simulation environment used. Future research could explore
larger-scale networks, additional performance metrics, and further refinement of
the fault tolerance mechanisms.

REFERENCES

[1] G. Wang, Y. Zhao, J. Huang, and W. Wang, "The Controller Placement

Problem in Software Defined Networking: A Survey," IEEE Network, pp.
21-27, 2017.

[2] M. Mbodila, B. Isong, and N. Gasela, "Towards a Cost-Effective SDN-
Enabled on-Demand Security Services Framework," in 2023 International

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Munienge Mbodila, Omobayo Ayokunle Esan, at all | 1741

Conference on Electrical, Computer and Energy Technologies (ICECET), 2023:
IEEE, pp. 1-6, 2023.

[3] L. Mamushiane, J. Mwangama, and A. Lysko, "Controller Placement
Optimization For Software Defined Wide Area Networks (SDWAN),"
Council for Scientific and Industrial Research (CSIR), 2019.

[4] K. A. Rasol and J. Domingo-Pascual, "Multi-level Hierarchical Controller
Placement in Software Defined Networking," 12th International Networking
Conference. INC 2020". Berlín: Springer, pp. 131-145, 2020.

[5] A. K. Tran, M. J. Piran, and C. Pham, "SDN Controller Placement in IoT
Networks: An Optimized Submodularity-Based Approach," Sensors vol.
19, no. 5474, pp. 1-27, 2019, doi: doi:10.3390/s19245474.

[6] A. Jalili, M. Keshtgari, and V. Ahmadi, "Controller Placement in
Software-Defined WAN Using Multi Objective Genetic Algorithm,"
International Journal of Mechatronic,Electrical and Computer Technology, vol. 5 no.
18, pp. 2655-2663, 2015.

[7] X. You, Y. Feng, and K. Sakurai, "Packet in message based DDoS attack
detection in SDN network using OpenFlow," in 2017 Fifth International
Symposium on Computing and Networking (CANDAR), 2017: IEEE, pp. 522-
528, 2017.

[8] F. Elegbeleye and S. Rananga, "IoT Device Cost Effective Storage
Architecture and Real-Time Data Analysis/Data Privacy Framework,"
International Journal of Industrial and Manufacturing Engineering, vol. 17, no. 7,
pp. 288-298, 2023.

[9] J. Zhao, H. Qu, J. Zhao, Z. Luan, and Y. Guo, "Towards controller
placement problem for software-defined network using affinity
propagation," Electronics Letters, vol. 53, no. 14, pp. 928–929, 2017.

[10] B. Heller, R. Sherwood, and N. McKeown, "The controller placement
problem," in Proc. First workshop on Hot topics in software-defined networks, pp.
7-12, 2012.

[11] G. Yao, J. Bi, Y. Li, and L. Guo, "On the Capacitated Controller
Placement Problem in Software-Defined Networks," IEEE communication
Letters, vol. 18, no. 8, pp. 1339-1342, 2014.

[12] B. Heller, R. Sherwood, and N. Mckeown, "Controller Placement
Problem," in Proc. HotSDN, pp. 7–12, 2012.

[13] S. Čaušević and M. Begović, "Optimizing Traffic Routing in Different
Network Environments Using the Concept of Software-Defined
Networks," in 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2019:
IEEE, pp. 409-414.

[14] R. Salam and A. Bhattacharya, "Efficient greedy heuristic approach for
fault-tolerant distributed controller placement in scalable SDN
architecture," Cluster Computing (2022) vol. 25, pp. 4543–4572, 2022.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1742 | Optimization of Network Performance in Complex Environments with Software

[15] T. Das, V. Sridharan, and M. Gurusamy, "A survey on controller
placement in SDN," IEEE communications surveys & tutorials, vol. 22, no. 1,
pp. 472-503, 2019.

[16] F. A. Elegbeleye, M. Mbodila, O. A. Esan, and I. Elegbeleye, "Cost-
effective internet of things privacy-aware data storage and real-time
analysis," Int J Artif Intell, vol. 13, no. 1, pp. 247-255, 2024.

[17] M. Khorramizadeh and V. Ahmadi, "Capacity and load-aware software-
defined network controller placement in heterogeneous environments,"
Comput. Commun., , vol. 129, pp. 226-247, 2018.

[18] F. J. Ros and P. M. Ruiz, "On reliable controller placements in software
defined networks," Comput. Commun., , vol. 77, pp. 41-51, 2016.

[19] N. S. Radam, S. T. F. Al-Janabi, and K. S. Jasim, "Multi-Controllers
Placement Optimization in SDN by the Hybrid HSA-PSO Algorithm,"
Computers vol. 11, no. 7, p. 111, 2022, doi: 10.3390/computers11070111.

[20] A. Naseri, M. Ahmadi, and L. PourKarimi, "Placement of SDN
controllers based on network setup cost and latency of control packets,"
Computer Communications, vol. 208, no. 1, pp. 15-28, 2023, doi:
10.1016/j.comcom.2023.05.015.

[21] M. A. Aglan, M. A. Sobh, and A. M. Bahaa-Eldin, "Reliability and
scalability in SDN networks," in 2018 13th International Conference on
Computer Engineering and Systems (ICCES), 2018: IEEE, pp. 549-554, 2018.

[22] F. A. Elegbeleye, M. Mbodila, A. Mabovana, and O. A. Esan, "Data
privacy on using four models-a review," in 2022 International Conference on
Electrical, Computer and Energy Technologies (ICECET), 2022: IEEE, pp. 1-9,
2022.

