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Abstract 
 
Wildfires pose a grave danger and threat to both human health and the environment, which 
is why early detection of wildfires is crucial. In this study, a convolutional neural network, 
which is a deep learning technique for computer vision, that is capable of classifying 
satellite imaging of forest cover in Canada as either being prone to wildfires or not being 
prone to wildfires is created. This model achieved an accuracy of 95.06% and is not only 
accurate but also reliable and unbiased in terms of the training set and the test set. We also 
review an existing model for the same dataset. Furthermore, this study discusses the 
application of this model in the real world, its feasibility, its future scope, and strategies to 
improve it. 
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1. INTRODUCTION 
 
A wildfire is an out-of-control and unpredictable fire that burns because of the 
combustion of vegetation [1]. Despite wildfires being a natural event, crucial for 
forest regeneration, they have various negative impacts, such as increased air 
pollution, habitat loss, soil erosion, and more [2], [3]. The Canadian wildfires of 
March 2023 escalated in June and July of 2023, destroying 22 million acres of land. 
Furthermore, states in the USA, such as New York, have suffered from an orange 
haze covering the skies in early June, making it the city with the worst air pollution 
at the time [4]. For this reason, preventing wildfires is crucial. Wildfires have the 
natural role of strengthening soil and maintaining biodiversity; zowever, due to 
global warming, the frequency of wildfires has increased making it a more 
troublesome issue [5], [6]. 
 
Satellites monitor wildfires today by observing land-use and land-cover changes 
(LULCC) [7]. They both slightly differ in definition, as Land-cover is the natural 
and anthropogenic characteristics that one can observe on the surface, enabling it 
to cover different biomes and types of land such as wetlands, rainforests, water 
bodies, etc. On the other hand, land use refers to the activities that take place on 
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land, such as cars, urban infrastructure, etc. LULCC plays a key role in tracking 
and observing wildfires as well as collecting data that can help us form solutions. 
One way of using LULCC data is to train artificial intelligence models that can 
help us predict when or where a wildfire is likely to occur. With the rise of artificial 
intelligence in modern times, the time to use AI to aid in wildfire prevention has 
never been better. Furthermore, the integration of artificial intelligence in satellite 
imaging can increase the predictive power for detecting signs of wildfires [8]. 
Computer vision is a field of artificial intelligence that helps computers interpret 
and understand visuals, whether they are videos or pictures. Using data on wildfire-
prone areas from ongoing and past wildfires, such as the Canadian wildfires, can 
help us build strong computer vision models [9]. This paper aims to investigate 
how the integration of computer vision in satellite imaging can help us detect and 
mitigate forest fires. 

 
To build such models, we need to use the widely known deep learning technique 
known as convolutional neural networks (CNNs), which is used by machine 
learning engineers throughout the world because of its efficient training capacity 
and ability to identify edges and shapes of objects in images [10]. Neural networks 
interpret images as a 3D matrix of pixels, where each pixel is an RGB (red, blue, 
and green) matrix. Regular neural networks struggle to work with images as they 
pile up too many parameters, leading to overfitting. However, convolutional 
neural networks are neural networks with a more sensible architecture specifically 
made for image inputs [11]. The architecture of a CNN consists of three 
fundamental types of layers: a convolutional layer, a pooling layer, and a fully 
connected layer [11]. The convolutional layer strides a filter matrix over the input 
image, computing the dot product between each local area to generate a new 
matrix containing features of the image that the neural network will use for 
classification. The pooling layer down-samples the image along the spatial 
dimensions (width and height of the image) to reduce the number of parameters 
and prevent overfitting. The fully connected layer, the last layer, computes the 
class scores (probabilities of an image belonging to the classes or categories). In 
summary, the input of CNNs is an image matrix with a depth of 3 for each color 
channel, with the output being a matrix of class cores. In this paper the CNN’s 
performance is improved upon by experimenting with the model’s number of 
layers and by experimenting with various hyperparameter values. 
 
 
2. METHODS 
 
2.1  Research Flowchart 
 
The research flowchart is a visual summary of the process followed in this paper 
as shown in Figure 1. By following these steps, existing models are improved, and 
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the real-life applicability, performance and model reliability is investigated. By 
following the process, structured research is carried out. 
 

 
Figure 1. Research Process 

 
2.2  Data Description 
 
To build a CNN specific to classifying wildfire-prone and wildfire-safe areas, we 
needed a large number of past satellite images. In this paper, a dataset from Kaggle 
consisting of satellite images of forests in Canada is used to categorize pictures 
into wildfire-prone and non-wildfire-prone areas [12]. The images are all 350x350 
in resolution, with approximately 42000 images divided into 70% training, 15% 
testing, and 15% validation data. This data will be pre-processed and formatted 
into the correct data structure so that it can be fed into the neural network for 
training for the most accurate metrics.  
 
2.3  Existing Model Analysis 
 
The model chosen for analysis is a notebook created by Abdelghani Aaba, Bouchra 
Rakhiss, and Msalek Aicha on Kaggle for the same dataset used to create our 
model [12], [13]. The convolutional neural network analyzed features the following 
architecture: 

 
Table 1.  Architecture of existing model 

Layer [type) Output Shape Params 

Conv2D (None, 349, 349, 8) 104 
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Max Pooling (None, 174, 174, 8) 0 

Conv2D (None, 173, 173, 16) 528 

Max Pooling (None, 86, 86, 16) 0 

Conv2D (None, 85, 85, 32) 2080 

Max Pooling (None, 42, 42, 32) 0 

Dropout (0.5) (None, 42, 42, 32) 0 

Flatten (None, 56448) 0 

Dense (None, 300) 16934700 

Dropout (0.4) (None, 100) 0 

Dense (None, 2) 602 

 
Total parameters: 16,938,014 
Trainable parameters: 16,938,014 
Non-trainable parameters: 0 
 
1) Convolution Layers 
There are 3 convolution layers in this architecture, in which each successive 
Conv2D layer gains more depth each time. As mentioned earlier, convolution 
layers extract features from images by sliding filters over them. In this case, a filter 
of size 2x2 is used [14]. 

 
Figure 2. Visualization of a convolution layer 
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Depth in a convolution layer refers to the number of filters in the layer. The reason 
behind the ascending order of the number of filters is that the initial image is 
inputted as raw pixel data, which is quite noisy, so complex shapes are harder to 
extract at the raw pixel value. This is why the initial convolution layers have only 
a few filters so that basic edges and shapes can be extracted, and later in the layers, 
the more complex features can be extracted on a less noisy image. The more filters, 
the greater the number of features that can be extracted from the image. 
 
2) Max Pool layers 
Max Pooling is a popular down-sampling method that helps reduce the resolution 
of the image [19][14]. This is important to avoid over-fitting, which is when the 
model fits the training set well but performs poorly on the test set, and to reduce 
the training time of the model. In this architecture, the model uses 3 MaxPool 
layers, one after each of the convolution layers, with a pool size of 2x2. Max 
Pooling works by taking the maximum value of the 2x2 area of the image and 
moving on to the next 2x2 area. 

 
Figure 3. Visualization of a MaxPool layer 

 
3) Flatten Layer 
The flatten layer is a standard layer used near the end of all CNNs [14]. It converts 
the output of the CNN to a 1-dimensional vector so that this vector can be passed 
onto the final classification layers. 
 
4) Dense Layers:  
The dense layers, also known as the fully connected layers, perform the final 
classification on the feature maps extracted from the convolutional layers [14]. The 
final dense layer in the network is the final classification layer, which takes an 
integer as a parameter that defines the number of classes the model needs to 
predict. In this model, the final dense layer takes in 2 classes, as there are 2 classes: 
wildfires and no wildfires. 
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5)  Dropout Layers:  
Dropout layers are used to prevent overfitting [15]. Overfitting is an issue that 
occurs during the training stage of making a model. It occurs when the model has 
good metrics on the training data but can’t achieve similar metrics on validation 
or test data. This means that the model is not generalized and is weak at predicting 
new images. To prevent this, the model uses dropout layers that disconnect the 
connection between a certain percentage of neurons in the fully connected layer. 
This model uses two dropout layers that disconnect 40% of the neurons in the 
first layer and 50% of the neurons in the second layer. By reducing the number of 
connections, the model becomes less complex, which allows it to generalize to 
new data better. 
 
6) Activation Functions 
Activation functions are used in CNNs to add non-linearity to the model. The 
relationship between labels and images isn’t linear, so this is important to derive a 
proper relationship. There are many activation functions, but the most popular in 
CNNs is ReLU, which stands for Rectified Linear Unit [16], as shown in Equation 
1. This function returns 0 if the input is negative and returns the same value if the 
input is positive (Figure 4). 
 

ReLU Function:f(x)=max⁡(0,x)        (1) 

 
Figure 4. ReLU Function Visualization 

 
This model uses a ReLU activation function in all the convolution and fully 
connected layers except in the last layer, where it uses a SoftMax function. A 
SoftMax function is a function usually used at the end of the CNN that calculates 
the output probabilities of the image passed [17], as shown in Equation 2. For 
example, if we pass a wildfire image, the function may predict a 95% chance of it 
belonging to the wildfire class and a 5% chance of it belonging to the no wildfire 
class. 

SoftMax function:S(y)i= 
exp⁡(yi)

∑ exp⁡(yj)
n
j=1

    (2) 
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7) Optimizer 
TensorFlow optimizers are predefined optimizers with set hyperparameters for 
model training. The most popular optimizer is Adam, which consists of the 
various necessary parameters required for proper training such as learning rate, 
weight decay, beta 1, beta 2, etc., which will be discussed later [18],[19]. 
 
8) Parameters 
The first parameter that needs to be discussed is the learning rate. Learning rate 
has to do with gradient descent, which is a concept that is associated with reducing 
the loss metric of the model during training. During the initial iteration, the ML 
model sets its training parameters to a random value and computes the loss (how 
far the predicted value is from the actual value). It then changes the model 
parameters based on the learning rate to reduce the loss and continues doing this 
until it reaches the minimum possible loss. The learning rate is a parameter that 
tells us how much we change the parameters of the model at every iteration of 
training. During training, the learning rate is tuned to make sure the most optimal 
learning rate is chosen to ensure the training time is the least while the loss is also 
the least. In this case, the model was trained with a learning rate of 0.0001. Another 
parameter that the model had applied for its training was early stopping, which is 
a parameter that stopped the training if the loss didn’t improve on the model for 
an n number of iterations. Besides the learning rate, the other parameter that was 
modified during the training was weight decay. Large weights in a model can cause 
overfitting, so by implementing weight decay, the weights of the model are reduced 
closer to 0 to prevent overfitting. During the training of this model, the weight 
decay was set to 10-5. Another hyperparameter that is changed is the batch size. 
The batch size is the number of images or data points that are run through the 
model at each iteration [20]. Batch size can be used to reduce training time when 
there are too many images in a dataset. During the training of this model, the batch 
size is 256. Apart from these two hyperparameters, the remaining hyperparameters 
used were the default hyperparameters of Adam [21]. The model was then trained 
for 50 epochs (iterations). 
 
9) Final Metrics and Performance of the Model 
The sake of comparison, I retrained this model without early stopping to keep the 
factors controlled between my model, which come later in the paper, and the 
model taken from Kaggle. The following were the metrics: 
 

Testing accuracy: 0.9565  
Testing Loss: 0.1412  

 
It is visible that the loss of the model is quite low, and the accuracy is quite high, 
which means that it is an accurate model. Furthermore, the validation metrics are 
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like the training metrics, which means that the model is generalized and can predict 
new data presented to it well. 
 
2.4 Data Processing and Visualization 
 
After analyzing the model by Waleed Gul, my model creation began. Before 
creating the CNN architecture for training, the data needed to be cleaned and 
preprocessed. The higher the quality of the data used, the more accurate the 
prediction of the machine learning model is. The data was taken from Kaggle and 
then analyzed. A couple of the preprocessing steps were already taken by the 
creators of the dataset, as all the images had the same resolution (350 x 350) and 
file format (.jpg). Furthermore, the dataset was also divided into training, testing, 
and validation sets. A few more steps were taken to further increase the quality of 
the dataset. 

 
Figure 5. Sample Wildfire Images 

 

 
Figure 6. Sample No Wildfire Images 

 
1) Checking for Duplicates  
Eliminating duplicates is often a good idea, as duplicates can lead to poor 
generalization of models and slight overfitting. The approach to eliminating 
duplicates is to convert all the images into image matrices, which would have a 
shape of (350, 350, 3). Then, the list of image matrices is iterated through to see if 



Journal of Information Systems and Informatics 
Vol. 6, No. 3, September 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

 
Ansh Gupta | 2181 

identical matrices exist in the dataset. A total of 32 duplicates are found in the 
dataset and are eliminated. 
 
2) Observing and analyzing the distribution of file sizes across the dataset  
To ensure that all the data in the dataset is similar, the distribution of file sizes is 
analyzed. Furthermore, we need to make sure that the data is well distributed 
instead of being skewed to reduce bias. First, the minimum, first quartile, median, 
third quartile, and maximum values are calculated for the file sizes. Using these 
values, a box and whiskers graph is plotted to visualize the distribution of data as 
shown in Figure 7. 
 

 
Figure 7. Box plot of unprocessed dataset 

 
Then, the interquartile range of the file sizes is used to find the upper and lower 
bounds for identifying outliers. Approximately 400 outliers are eliminated from 
the wildfire image data set, and 600 outliers are eliminated from the non-wildfire 
image data set. Then, the mean is calculated to compare it to the median. For both 
classes, the median is similar to the mean, which means that the data is well 
distributed. 
 
3) Viewing the dataset after pre-processing  
After pre-processing, the training set had 22382 images in the wildfire class and 
19561 images in the no wildfire class. There were approximately 3,000 more 
images in the wildfire class. Though both classes had a relatively similar number 
of images, there were more images in a wildfire, which meant the model would 
have more predictive power for the wildfire class. For this reason, the possibility 
of the model being biased toward the wildfire class was kept in mind (Figure 8). 
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Figure 8. pre-processed data 

 
2.5 Model Creation / CNN Architecture 
 
After data processing, the model creation phase is started with a simple CNN 
structure: 1 convolutional layer, 1 max pool layer, 1 flattened layer, and 1 dense 
layer. The optimizer is set to Adam, and the base model (Figure 9) was tested for 
its metrics 

 
Figure 8. Optimizer 

 
Then choose one parameter or layer to change in the architecture, for example, 
the activation function, and then record the metrics of the model with different 
activation functions until I find the best. I also experiment with various aspects of 
the convolutional neural network, such as the filter size, number of filters, number 
of layers, optimizer, etc., Finally see improvements in the metrics. Furthermore, 
to reduce training time and negate bias, only 10,000 images from each class are 
trained. The best architecture that I create is fairly similar to that of the model that 
was analyzed. To deal with overfitting I use various methods to prevent it, such as 
using dropout layers and adding an L2 regularizer to the model architecture [22]. 
The L2 regularizer works similarly to weight decay, where it makes the model 
simpler by reducing large weights to a value close to 0 but not 0. Smaller weights 
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help prevent overfitting. One dropout layer at the end of the model and 
experiment with different values. Eventually, they ended up getting the same 
combination of dropout layers as the analyzed model. This approach helps find 
the optimal architecture for a convolutional neural network as you change one 
variable at a time while keeping the rest constant. The final model architecture was 
quite like the analyzed model as shown in Table 2. 

 
Table 2. Architecture of proposed model 

Layer (type) Output Shape Params 

Conv2D (None, 349, 349, 8) 104 

Max Pooling (None, 174, 174, 8) 0 

Conv2D (None, 173, 173, 16) 528 

Max Pooling (None, 86, 86, 16) 0 

Conv2D (None, 85, 85, 32) 2080 

Max Pooling (None, 42, 42, 32) 0 

Flatten (None, 56448) 0 

Dropout (0.1) (None, 56448) 0 

Dense (None, 300) 16934700 

Dropout (0.4) (None, 300) 0 

Dense (None, 2) 602 

 
Total parameters: 16,938,014 
Trainable parameters: 16,938,014 
Non-trainable parameters: 0 
 
In this architecture, each convolution layer has a ReLU activation function, and 
the penultimate dense layer has a ReLU activation function. The last layer (the 
dense layer) has a SoftMax activation function to calculate the probability scores 
of the categories. 
 
2.6  Hyperparameter Tuning 
 
Learning rate: The learning rate is a hyperparameter that determines how big of a 
step the model’s weights take when moving down the gradient descent. The 



Journal of Information Systems and Informatics 
Vol. 6, No. 3, September 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

 
2184 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional ….. 

optimum learning rate, often referred to as the ‘Goldilocks learning rate, is when 
the weights of the model converge to the lowest loss efficiently. 
 

 
Figure 10. Visualization of gradient descent [23] 

 
Beta 1 (β1) - β1 is a hyperparameter that refers to the first derivative of the gradient 
descent. So, the smaller the value of β1, the less steep the slope of the gradient 
descent is. β1 helps with smoother convergence in the loss curve.  Like the 
approach for building the model architecture, I experiment with different 
optimizers to finally derive Adam as the best optimizer. Then I experiment with 
the other hyperparameters, such as learning rate, so that I can improve the model 
metrics. The Goldilocks learning rate for this model is 0.00001, as this learning 
rate steadily reduces the loss, allowing it to converge instead of shooting over the 
minimum loss value or taking too much time to converge. However, the loss curve 
doesn’t converge smoothly even with this adjustment in learning rate. Even at this 
stage, there is slight overfitting visible in the model. Another issue is that the initial 
drops in loss are very large, which makes the gradient of the loss curve very high 
in the beginning. To deal with this, I am going to experiment with the beta 1 (β1) 
hyperparameter. I find that a β1 value of 0.8 is the best for ensuring the 
convergence of the loss curve is smooth and the validation data is converging 
similarly to the training data. Reducing the Beta 1 value helps the curves converge 
more smoothly but also increases the training time. After the hyperparameters are 
tuned, the final model is trained for 50 epochs to get the best possible metrics.  
 
3. RESULTS AND DISCUSSION 
 
3.1  Accuracy and Loss Graphs  
 
The results of training a machine learning model over 50 epochs. In Figure 11, the 
accuracy graph illustrates that both the training and validation accuracies start at 
different levels but converge towards a high value close to 1.00 as training 
progresses. This suggests that the model becomes increasingly proficient at 
correctly predicting both the training data and unseen validation data. Figure 12 
shows the loss over the same period, with both training and validation losses 
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starting at higher values and steadily decreasing to just below 0.05 by the end of 
the training. This reduction in loss indicates that the model is effectively 
minimizing errors in its predictions over time. The behavior of both graphs, with 
the validation metrics closely following the training metrics, suggests that the 
model is generalizing well to new data without significant overfitting. 
 

 
Figure 11. Accuracy / Epochs.           Figure 12. Loss / Epochs 

 
3.2 Performance Metrics 
 
The final model is evaluated using a testing set that contained approximately 6,000 
images that the model had never seen before. After running the model on the test 
set, these were the following results: 
 

Test Accuracy: 0.9506 
Test Loss: 0.1494 

Mean Absolute Error: 0.053 
 

Then using the predictions conducted on the test set, a confusion matrix is shown 
in Figure13. 

 
Figure 13. Confusion matrix of my model 
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A confusion matrix is a summary of the predictions made on the test set [24]. On 
the y-axis, the actual labels of the predictions are matched against the x-axis, the 
prediction labels from the model. The diagonal going from the top left to the 
bottom right shows the percentage of values that were predicted correctly. The 
Wildfire/Wildfire square and the No Wildfire/No Wildfire square show all the 
correctly predicted values. This confusion matrix (figure 13) shows that the model 
created is not only accurate, as there is a high percentage of ‘true wildfire’ and ‘true 
no wildfire’ prediction and a low percentage of ‘false wildfire’ and ‘false no 
wildfire’, but because the values are balanced with 95% correct prediction for both 
wildfire and no wildfire, the model is also unbiased. Using the confusion matrix, 
we can calculate 3 more metrics: Precision, Recall, and F1 score. Precision and 
Recall are metrics that help us compare the true-positive values with the false-
positive and false-negative values. It is also used in the calculation of the F1 score 
which gives us an idea of how balanced our model is.  
 

Precision: 0.948 
Recall: 0.953  

F1 Score: 0.950 
 
Since precision and recall are similar and the F1 score is high, it means that the 
model is well-balanced and unbiased. 
 
3.3 Comparison of my model with existing model 
 
Both models have a very similar architecture with the same number of layers. The 
only difference in the architecture is that the model taken from Kaggle has a 
dropout layer combination of a 50% dropout in the first layer and 40% dropout 
in the second layer, whereas the model created by me has a dropout layer 
combination of 10% dropout in the first layer and 40% dropout in the second 
layer. This means that the model from Kaggle has reduced complexity as more 
neurons were disconnected. 
 
Besides the architecture, the other differences between the two models are in the 
hyperparameters in training. While they both use the Adam optimizer, the Kaggle 
model uses a batch size of 256 to reduce its training time; however, for my model, 
I didn’t include a specified batch size and instead let all the data run through the 
model during training. Furthermore, to make the loss converge, the Kaggle model 
reduced the weight decay to 10-5; However, instead of changing the weight decay, 
I reduced the β1 hyperparameter to 0.8. After training the models, the difference 
in loss and accuracy is almost negligible, as the difference in the metrics is in the 
third decimal place. The loss for both models is approximately 0.14 to 0.15, and 
the accuracy is approximately 0.95.  
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The major difference between the models is in the convergence of the loss graph 
(Figures 14 and 15). During training, the Kaggle model converges with less noise 
but is much steeper, whereas my model converges with a lower slope but more 
noise in the validation curve. 
 

 
Figure 14. Loss / Epochs of existing model  Figure 15. Loss / Epochs of my model 

 
 

 
3.4 Analyzing the effectiveness of this model in real life. 
 
To analyze the usefulness of the model, a test data set was created using Canadian 
satellite images from ArcGIS, an online geographic information software. [25] The 
model was then used to predict vulnerability to wildfires on the test set. Figures 
16 and 17,  are some predictions made by the model on random instances of the 
test set. The prediction of an area being prone to wildfires is represented by the 
number ‘0’ and, the prediction of an area not being prone to wildfires is 
represented by the number ‘1’. In figure 16, some of the correct predictions made 
by the model can be observed. In figure 17 majority of the wrong predictions are 
areas prone to wildfires being predicted as not-prone meaning that the model still 
has room for improvement in making predictions for wildfires. 

Figure 16. Correct Predictions on the ArcGIS Images 

Figure 17. Incorrect Predictions on the ArcGIS Images 
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To look at the non-overlap in the data, which refers to areas in the test set which 
do not match the prediction for the vulnerability to wildfires, the Jaccard index 
was used, as shown in Equetion 2. 
 

Jaccard Index: J(A, B)= |A∪B|
|A∩B|

    (2) 
 
The Jaccard Index provides the percentage of the predicted samples that do 
overlap with the actual samples. To quantify non-overlap, we can subtract the 
Jaccard index by 1: 
 

Nonoverlap = 1-J(A, B)	    (3) 
 
Non–overlap results: 

Jaccard Index=0.89 
Nonoverlap = 0.11 

 
According to the Jaccard Index, 89% of the samples overlap whereas 11% have 
non-overlap. This makes the model’s performance quite impressive as it has quite 
a high overlap percentage. 
 
3.5 Synthesis and Analysis of The Results 
 
The results show promising results as the model has high performance metrics 
with an F1 score of 0.95 and a Mean Absolute Error of 0.053. This shows that not 
only is the model extremely accurate, but it also performs equally well on both 
classes: wildfire and non-wildfire. Furthermore, testing the model on real life 
historical data of wildfires in Canada [25], showed that the model was able to 
generalize well even beyond the test dataset. By using the Jaccard Index, we found 
the model had a non-overlap of 0.11, which shows that 11% of the predicted 
values didn’t match the actual values. The model can be improved further to 
reduce this nonoverlap value which would increase its performance even more. 
Looking at the performance metrics based on real-life applicability, predictive 
power, and bias in the classes, the model is strong for its application. 
 
3.6 Applications of the Model in the real world 
 
The CNN model can be used to automatically predict land that is at risk of 
wildfires and aid humans in marking areas susceptible to wildfires. Having this 
knowledge beforehand can help us prevent wildfires and reduce its negative 
consequences. Furthermore, our model allows the CNN to learn the features of 
the 2 classes creates a strong pre-trained model. This pre-trained can then be used 
as a base for fine-tuning for more specific use cases such as real-time monitoring 
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of wildfires from camera feed or drone-surveillance for wildfires. The pre-trained 
model will ensure high accuracy for a fine-tuned model and will also result in lower 
computational costs when training models for more specific use-cases in wildfire 
prevention. Another key application of the CNN model is its ability to create a 
system to update the land cover prone to wildfires overtime by running predictions 
routinely. As time passes, areas-prone to wildfires change due to urban expansion. 
Even so, with the CNN-based system in place, our knowledge of which areas are 
prone to fires also updates automatically. This also narrows down the areas which 
we need to pay attention to when looking out for wildfires. 
 
4. CONCLUSION 
 
Wildfires in Canada and all around the world have caused devastating damage to 
human health and the environment. For this reason, preventing wildfires is crucial. 
Using a convolutional neural network, I created an AI model that can take LULCC 
satellite imaging as input and output a prediction of whether that area is prone to 
wildfires or not. The convolutional neural network is useful as a deep learning 
model it has a low testing loss of 0.1494 and a high accuracy of 0.9506, which 
means that it can accurately predict whether land is susceptible to wildfires or not 
with a minimal chance of error. Furthermore, after plotting a confusion matrix 
and calculating the precision, recall, and F1 score for the model, the model proved 
to be unbiased and capable of making accurate predictions for both categories 
(wildfire and no wildfire). Training the CNN model on this data can help draw out 
distinctive features in the 2 classes that may be hard to identify from the naked eye 
such as the risk of wildfires in wildland-urban interface (WUI). Currently, the 
model only uses data from Canadian vegetation. To make the model better in 
terms of learned features, we can train the model with a much larger dataset from 
data all around the world, making it learn better features. Furthermore, the model 
was trained on clear images, but sometimes satellite imaging can be unclear due to 
factors such as fog, false color, blurring, etc. If the model were to receive such 
images as input, it wouldn’t be able to predict as well, so to improve the model, 
we can use augmented and unclear images in the future. By harnessing the 
predictive power of CNN models, we can improve early detection, enhance 
resource allocation, and ultimately mitigate the impact of wildfires on both natural 
ecosystems and human communities. 
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