

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935

DOI: 10.51519/journalisi.v6i3.788 Published By DRPM-UBD

2173

	
 This work is licensed under a Creative Commons Attribution 4.0 International License.	

Predicting Forest Areas Susceptible to Fire Risk Using
Convolutional Neural Networks

Ansh Gupta1

1DPS International Gurgaon, Haryana, India

Email: 1anshgupta0621@gmail.com

Abstract

Wildfires pose a grave danger and threat to both human health and the environment, which
is why early detection of wildfires is crucial. In this study, a convolutional neural network,
which is a deep learning technique for computer vision, that is capable of classifying
satellite imaging of forest cover in Canada as either being prone to wildfires or not being
prone to wildfires is created. This model achieved an accuracy of 95.06% and is not only
accurate but also reliable and unbiased in terms of the training set and the test set. We also
review an existing model for the same dataset. Furthermore, this study discusses the
application of this model in the real world, its feasibility, its future scope, and strategies to
improve it.

Keywords: Convolutional Neural Network, Deep Learning, Satellite Imaging

1. INTRODUCTION

A wildfire is an out-of-control and unpredictable fire that burns because of the
combustion of vegetation [1]. Despite wildfires being a natural event, crucial for
forest regeneration, they have various negative impacts, such as increased air
pollution, habitat loss, soil erosion, and more [2], [3]. The Canadian wildfires of
March 2023 escalated in June and July of 2023, destroying 22 million acres of land.
Furthermore, states in the USA, such as New York, have suffered from an orange
haze covering the skies in early June, making it the city with the worst air pollution
at the time [4]. For this reason, preventing wildfires is crucial. Wildfires have the
natural role of strengthening soil and maintaining biodiversity; zowever, due to
global warming, the frequency of wildfires has increased making it a more
troublesome issue [5], [6].

Satellites monitor wildfires today by observing land-use and land-cover changes
(LULCC) [7]. They both slightly differ in definition, as Land-cover is the natural
and anthropogenic characteristics that one can observe on the surface, enabling it
to cover different biomes and types of land such as wetlands, rainforests, water
bodies, etc. On the other hand, land use refers to the activities that take place on

https://doi.org/10.51519/journalisi.v6i2.759
https://doi.org/10.51519/journalisi.v6i3.788
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2174 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

land, such as cars, urban infrastructure, etc. LULCC plays a key role in tracking
and observing wildfires as well as collecting data that can help us form solutions.
One way of using LULCC data is to train artificial intelligence models that can
help us predict when or where a wildfire is likely to occur. With the rise of artificial
intelligence in modern times, the time to use AI to aid in wildfire prevention has
never been better. Furthermore, the integration of artificial intelligence in satellite
imaging can increase the predictive power for detecting signs of wildfires [8].
Computer vision is a field of artificial intelligence that helps computers interpret
and understand visuals, whether they are videos or pictures. Using data on wildfire-
prone areas from ongoing and past wildfires, such as the Canadian wildfires, can
help us build strong computer vision models [9]. This paper aims to investigate
how the integration of computer vision in satellite imaging can help us detect and
mitigate forest fires.

To build such models, we need to use the widely known deep learning technique
known as convolutional neural networks (CNNs), which is used by machine
learning engineers throughout the world because of its efficient training capacity
and ability to identify edges and shapes of objects in images [10]. Neural networks
interpret images as a 3D matrix of pixels, where each pixel is an RGB (red, blue,
and green) matrix. Regular neural networks struggle to work with images as they
pile up too many parameters, leading to overfitting. However, convolutional
neural networks are neural networks with a more sensible architecture specifically
made for image inputs [11]. The architecture of a CNN consists of three
fundamental types of layers: a convolutional layer, a pooling layer, and a fully
connected layer [11]. The convolutional layer strides a filter matrix over the input
image, computing the dot product between each local area to generate a new
matrix containing features of the image that the neural network will use for
classification. The pooling layer down-samples the image along the spatial
dimensions (width and height of the image) to reduce the number of parameters
and prevent overfitting. The fully connected layer, the last layer, computes the
class scores (probabilities of an image belonging to the classes or categories). In
summary, the input of CNNs is an image matrix with a depth of 3 for each color
channel, with the output being a matrix of class cores. In this paper the CNN’s
performance is improved upon by experimenting with the model’s number of
layers and by experimenting with various hyperparameter values.

2. METHODS

2.1 Research Flowchart

The research flowchart is a visual summary of the process followed in this paper
as shown in Figure 1. By following these steps, existing models are improved, and

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2175

the real-life applicability, performance and model reliability is investigated. By
following the process, structured research is carried out.

Figure 1. Research Process

2.2 Data Description

To build a CNN specific to classifying wildfire-prone and wildfire-safe areas, we
needed a large number of past satellite images. In this paper, a dataset from Kaggle
consisting of satellite images of forests in Canada is used to categorize pictures
into wildfire-prone and non-wildfire-prone areas [12]. The images are all 350x350
in resolution, with approximately 42000 images divided into 70% training, 15%
testing, and 15% validation data. This data will be pre-processed and formatted
into the correct data structure so that it can be fed into the neural network for
training for the most accurate metrics.

2.3 Existing Model Analysis

The model chosen for analysis is a notebook created by Abdelghani Aaba, Bouchra
Rakhiss, and Msalek Aicha on Kaggle for the same dataset used to create our
model [12], [13]. The convolutional neural network analyzed features the following
architecture:

Table 1. Architecture of existing model

Layer [type) Output Shape Params

Conv2D (None, 349, 349, 8) 104

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2176 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

Max Pooling (None, 174, 174, 8) 0

Conv2D (None, 173, 173, 16) 528

Max Pooling (None, 86, 86, 16) 0

Conv2D (None, 85, 85, 32) 2080

Max Pooling (None, 42, 42, 32) 0

Dropout (0.5) (None, 42, 42, 32) 0

Flatten (None, 56448) 0

Dense (None, 300) 16934700

Dropout (0.4) (None, 100) 0

Dense (None, 2) 602

Total parameters: 16,938,014
Trainable parameters: 16,938,014
Non-trainable parameters: 0

1) Convolution Layers
There are 3 convolution layers in this architecture, in which each successive
Conv2D layer gains more depth each time. As mentioned earlier, convolution
layers extract features from images by sliding filters over them. In this case, a filter
of size 2x2 is used [14].

Figure 2. Visualization of a convolution layer

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2177

Depth in a convolution layer refers to the number of filters in the layer. The reason
behind the ascending order of the number of filters is that the initial image is
inputted as raw pixel data, which is quite noisy, so complex shapes are harder to
extract at the raw pixel value. This is why the initial convolution layers have only
a few filters so that basic edges and shapes can be extracted, and later in the layers,
the more complex features can be extracted on a less noisy image. The more filters,
the greater the number of features that can be extracted from the image.

2) Max Pool layers
Max Pooling is a popular down-sampling method that helps reduce the resolution
of the image [19][14]. This is important to avoid over-fitting, which is when the
model fits the training set well but performs poorly on the test set, and to reduce
the training time of the model. In this architecture, the model uses 3 MaxPool
layers, one after each of the convolution layers, with a pool size of 2x2. Max
Pooling works by taking the maximum value of the 2x2 area of the image and
moving on to the next 2x2 area.

Figure 3. Visualization of a MaxPool layer

3) Flatten Layer
The flatten layer is a standard layer used near the end of all CNNs [14]. It converts
the output of the CNN to a 1-dimensional vector so that this vector can be passed
onto the final classification layers.

4) Dense Layers:
The dense layers, also known as the fully connected layers, perform the final
classification on the feature maps extracted from the convolutional layers [14]. The
final dense layer in the network is the final classification layer, which takes an
integer as a parameter that defines the number of classes the model needs to
predict. In this model, the final dense layer takes in 2 classes, as there are 2 classes:
wildfires and no wildfires.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2178 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

5) Dropout Layers:
Dropout layers are used to prevent overfitting [15]. Overfitting is an issue that
occurs during the training stage of making a model. It occurs when the model has
good metrics on the training data but can’t achieve similar metrics on validation
or test data. This means that the model is not generalized and is weak at predicting
new images. To prevent this, the model uses dropout layers that disconnect the
connection between a certain percentage of neurons in the fully connected layer.
This model uses two dropout layers that disconnect 40% of the neurons in the
first layer and 50% of the neurons in the second layer. By reducing the number of
connections, the model becomes less complex, which allows it to generalize to
new data better.

6) Activation Functions
Activation functions are used in CNNs to add non-linearity to the model. The
relationship between labels and images isn’t linear, so this is important to derive a
proper relationship. There are many activation functions, but the most popular in
CNNs is ReLU, which stands for Rectified Linear Unit [16], as shown in Equation
1. This function returns 0 if the input is negative and returns the same value if the
input is positive (Figure 4).

ReLU Function:f(x)=max⁡(0,x) (1)

Figure 4. ReLU Function Visualization

This model uses a ReLU activation function in all the convolution and fully
connected layers except in the last layer, where it uses a SoftMax function. A
SoftMax function is a function usually used at the end of the CNN that calculates
the output probabilities of the image passed [17], as shown in Equation 2. For
example, if we pass a wildfire image, the function may predict a 95% chance of it
belonging to the wildfire class and a 5% chance of it belonging to the no wildfire
class.

SoftMax function:S(y)i=
exp⁡(yi)

∑ exp⁡(yj)
n
j=1

 (2)

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2179

7) Optimizer
TensorFlow optimizers are predefined optimizers with set hyperparameters for
model training. The most popular optimizer is Adam, which consists of the
various necessary parameters required for proper training such as learning rate,
weight decay, beta 1, beta 2, etc., which will be discussed later [18],[19].

8) Parameters
The first parameter that needs to be discussed is the learning rate. Learning rate
has to do with gradient descent, which is a concept that is associated with reducing
the loss metric of the model during training. During the initial iteration, the ML
model sets its training parameters to a random value and computes the loss (how
far the predicted value is from the actual value). It then changes the model
parameters based on the learning rate to reduce the loss and continues doing this
until it reaches the minimum possible loss. The learning rate is a parameter that
tells us how much we change the parameters of the model at every iteration of
training. During training, the learning rate is tuned to make sure the most optimal
learning rate is chosen to ensure the training time is the least while the loss is also
the least. In this case, the model was trained with a learning rate of 0.0001. Another
parameter that the model had applied for its training was early stopping, which is
a parameter that stopped the training if the loss didn’t improve on the model for
an n number of iterations. Besides the learning rate, the other parameter that was
modified during the training was weight decay. Large weights in a model can cause
overfitting, so by implementing weight decay, the weights of the model are reduced
closer to 0 to prevent overfitting. During the training of this model, the weight
decay was set to 10-5. Another hyperparameter that is changed is the batch size.
The batch size is the number of images or data points that are run through the
model at each iteration [20]. Batch size can be used to reduce training time when
there are too many images in a dataset. During the training of this model, the batch
size is 256. Apart from these two hyperparameters, the remaining hyperparameters
used were the default hyperparameters of Adam [21]. The model was then trained
for 50 epochs (iterations).

9) Final Metrics and Performance of the Model
The sake of comparison, I retrained this model without early stopping to keep the
factors controlled between my model, which come later in the paper, and the
model taken from Kaggle. The following were the metrics:

Testing accuracy: 0.9565
Testing Loss: 0.1412

It is visible that the loss of the model is quite low, and the accuracy is quite high,
which means that it is an accurate model. Furthermore, the validation metrics are

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2180 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

like the training metrics, which means that the model is generalized and can predict
new data presented to it well.

2.4 Data Processing and Visualization

After analyzing the model by Waleed Gul, my model creation began. Before
creating the CNN architecture for training, the data needed to be cleaned and
preprocessed. The higher the quality of the data used, the more accurate the
prediction of the machine learning model is. The data was taken from Kaggle and
then analyzed. A couple of the preprocessing steps were already taken by the
creators of the dataset, as all the images had the same resolution (350 x 350) and
file format (.jpg). Furthermore, the dataset was also divided into training, testing,
and validation sets. A few more steps were taken to further increase the quality of
the dataset.

Figure 5. Sample Wildfire Images

Figure 6. Sample No Wildfire Images

1) Checking for Duplicates
Eliminating duplicates is often a good idea, as duplicates can lead to poor
generalization of models and slight overfitting. The approach to eliminating
duplicates is to convert all the images into image matrices, which would have a
shape of (350, 350, 3). Then, the list of image matrices is iterated through to see if

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2181

identical matrices exist in the dataset. A total of 32 duplicates are found in the
dataset and are eliminated.

2) Observing and analyzing the distribution of file sizes across the dataset
To ensure that all the data in the dataset is similar, the distribution of file sizes is
analyzed. Furthermore, we need to make sure that the data is well distributed
instead of being skewed to reduce bias. First, the minimum, first quartile, median,
third quartile, and maximum values are calculated for the file sizes. Using these
values, a box and whiskers graph is plotted to visualize the distribution of data as
shown in Figure 7.

Figure 7. Box plot of unprocessed dataset

Then, the interquartile range of the file sizes is used to find the upper and lower
bounds for identifying outliers. Approximately 400 outliers are eliminated from
the wildfire image data set, and 600 outliers are eliminated from the non-wildfire
image data set. Then, the mean is calculated to compare it to the median. For both
classes, the median is similar to the mean, which means that the data is well
distributed.

3) Viewing the dataset after pre-processing
After pre-processing, the training set had 22382 images in the wildfire class and
19561 images in the no wildfire class. There were approximately 3,000 more
images in the wildfire class. Though both classes had a relatively similar number
of images, there were more images in a wildfire, which meant the model would
have more predictive power for the wildfire class. For this reason, the possibility
of the model being biased toward the wildfire class was kept in mind (Figure 8).

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2182 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

Figure 8. pre-processed data

2.5 Model Creation / CNN Architecture

After data processing, the model creation phase is started with a simple CNN
structure: 1 convolutional layer, 1 max pool layer, 1 flattened layer, and 1 dense
layer. The optimizer is set to Adam, and the base model (Figure 9) was tested for
its metrics

Figure 8. Optimizer

Then choose one parameter or layer to change in the architecture, for example,
the activation function, and then record the metrics of the model with different
activation functions until I find the best. I also experiment with various aspects of
the convolutional neural network, such as the filter size, number of filters, number
of layers, optimizer, etc., Finally see improvements in the metrics. Furthermore,
to reduce training time and negate bias, only 10,000 images from each class are
trained. The best architecture that I create is fairly similar to that of the model that
was analyzed. To deal with overfitting I use various methods to prevent it, such as
using dropout layers and adding an L2 regularizer to the model architecture [22].
The L2 regularizer works similarly to weight decay, where it makes the model
simpler by reducing large weights to a value close to 0 but not 0. Smaller weights

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2183

help prevent overfitting. One dropout layer at the end of the model and
experiment with different values. Eventually, they ended up getting the same
combination of dropout layers as the analyzed model. This approach helps find
the optimal architecture for a convolutional neural network as you change one
variable at a time while keeping the rest constant. The final model architecture was
quite like the analyzed model as shown in Table 2.

Table 2. Architecture of proposed model

Layer (type) Output Shape Params

Conv2D (None, 349, 349, 8) 104

Max Pooling (None, 174, 174, 8) 0

Conv2D (None, 173, 173, 16) 528

Max Pooling (None, 86, 86, 16) 0

Conv2D (None, 85, 85, 32) 2080

Max Pooling (None, 42, 42, 32) 0

Flatten (None, 56448) 0

Dropout (0.1) (None, 56448) 0

Dense (None, 300) 16934700

Dropout (0.4) (None, 300) 0

Dense (None, 2) 602

Total parameters: 16,938,014
Trainable parameters: 16,938,014
Non-trainable parameters: 0

In this architecture, each convolution layer has a ReLU activation function, and
the penultimate dense layer has a ReLU activation function. The last layer (the
dense layer) has a SoftMax activation function to calculate the probability scores
of the categories.

2.6 Hyperparameter Tuning

Learning rate: The learning rate is a hyperparameter that determines how big of a
step the model’s weights take when moving down the gradient descent. The

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2184 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

optimum learning rate, often referred to as the ‘Goldilocks learning rate, is when
the weights of the model converge to the lowest loss efficiently.

Figure 10. Visualization of gradient descent [23]

Beta 1 (β1) - β1 is a hyperparameter that refers to the first derivative of the gradient
descent. So, the smaller the value of β1, the less steep the slope of the gradient
descent is. β1 helps with smoother convergence in the loss curve. Like the
approach for building the model architecture, I experiment with different
optimizers to finally derive Adam as the best optimizer. Then I experiment with
the other hyperparameters, such as learning rate, so that I can improve the model
metrics. The Goldilocks learning rate for this model is 0.00001, as this learning
rate steadily reduces the loss, allowing it to converge instead of shooting over the
minimum loss value or taking too much time to converge. However, the loss curve
doesn’t converge smoothly even with this adjustment in learning rate. Even at this
stage, there is slight overfitting visible in the model. Another issue is that the initial
drops in loss are very large, which makes the gradient of the loss curve very high
in the beginning. To deal with this, I am going to experiment with the beta 1 (β1)
hyperparameter. I find that a β1 value of 0.8 is the best for ensuring the
convergence of the loss curve is smooth and the validation data is converging
similarly to the training data. Reducing the Beta 1 value helps the curves converge
more smoothly but also increases the training time. After the hyperparameters are
tuned, the final model is trained for 50 epochs to get the best possible metrics.

3. RESULTS AND DISCUSSION

3.1 Accuracy and Loss Graphs

The results of training a machine learning model over 50 epochs. In Figure 11, the
accuracy graph illustrates that both the training and validation accuracies start at
different levels but converge towards a high value close to 1.00 as training
progresses. This suggests that the model becomes increasingly proficient at
correctly predicting both the training data and unseen validation data. Figure 12
shows the loss over the same period, with both training and validation losses

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2185

starting at higher values and steadily decreasing to just below 0.05 by the end of
the training. This reduction in loss indicates that the model is effectively
minimizing errors in its predictions over time. The behavior of both graphs, with
the validation metrics closely following the training metrics, suggests that the
model is generalizing well to new data without significant overfitting.

Figure 11. Accuracy / Epochs. Figure 12. Loss / Epochs

3.2 Performance Metrics

The final model is evaluated using a testing set that contained approximately 6,000
images that the model had never seen before. After running the model on the test
set, these were the following results:

Test Accuracy: 0.9506
Test Loss: 0.1494

Mean Absolute Error: 0.053

Then using the predictions conducted on the test set, a confusion matrix is shown
in Figure13.

Figure 13. Confusion matrix of my model

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2186 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

A confusion matrix is a summary of the predictions made on the test set [24]. On
the y-axis, the actual labels of the predictions are matched against the x-axis, the
prediction labels from the model. The diagonal going from the top left to the
bottom right shows the percentage of values that were predicted correctly. The
Wildfire/Wildfire square and the No Wildfire/No Wildfire square show all the
correctly predicted values. This confusion matrix (figure 13) shows that the model
created is not only accurate, as there is a high percentage of ‘true wildfire’ and ‘true
no wildfire’ prediction and a low percentage of ‘false wildfire’ and ‘false no
wildfire’, but because the values are balanced with 95% correct prediction for both
wildfire and no wildfire, the model is also unbiased. Using the confusion matrix,
we can calculate 3 more metrics: Precision, Recall, and F1 score. Precision and
Recall are metrics that help us compare the true-positive values with the false-
positive and false-negative values. It is also used in the calculation of the F1 score
which gives us an idea of how balanced our model is.

Precision: 0.948
Recall: 0.953

F1 Score: 0.950

Since precision and recall are similar and the F1 score is high, it means that the
model is well-balanced and unbiased.

3.3 Comparison of my model with existing model

Both models have a very similar architecture with the same number of layers. The
only difference in the architecture is that the model taken from Kaggle has a
dropout layer combination of a 50% dropout in the first layer and 40% dropout
in the second layer, whereas the model created by me has a dropout layer
combination of 10% dropout in the first layer and 40% dropout in the second
layer. This means that the model from Kaggle has reduced complexity as more
neurons were disconnected.

Besides the architecture, the other differences between the two models are in the
hyperparameters in training. While they both use the Adam optimizer, the Kaggle
model uses a batch size of 256 to reduce its training time; however, for my model,
I didn’t include a specified batch size and instead let all the data run through the
model during training. Furthermore, to make the loss converge, the Kaggle model
reduced the weight decay to 10-5; However, instead of changing the weight decay,
I reduced the β1 hyperparameter to 0.8. After training the models, the difference
in loss and accuracy is almost negligible, as the difference in the metrics is in the
third decimal place. The loss for both models is approximately 0.14 to 0.15, and
the accuracy is approximately 0.95.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2187

The major difference between the models is in the convergence of the loss graph
(Figures 14 and 15). During training, the Kaggle model converges with less noise
but is much steeper, whereas my model converges with a lower slope but more
noise in the validation curve.

Figure 14. Loss / Epochs of existing model Figure 15. Loss / Epochs of my model

3.4 Analyzing the effectiveness of this model in real life.

To analyze the usefulness of the model, a test data set was created using Canadian
satellite images from ArcGIS, an online geographic information software. [25] The
model was then used to predict vulnerability to wildfires on the test set. Figures
16 and 17, are some predictions made by the model on random instances of the
test set. The prediction of an area being prone to wildfires is represented by the
number ‘0’ and, the prediction of an area not being prone to wildfires is
represented by the number ‘1’. In figure 16, some of the correct predictions made
by the model can be observed. In figure 17 majority of the wrong predictions are
areas prone to wildfires being predicted as not-prone meaning that the model still
has room for improvement in making predictions for wildfires.

Figure 16. Correct Predictions on the ArcGIS Images

Figure 17. Incorrect Predictions on the ArcGIS Images

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2188 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

To look at the non-overlap in the data, which refers to areas in the test set which
do not match the prediction for the vulnerability to wildfires, the Jaccard index
was used, as shown in Equetion 2.

Jaccard Index: J(A, B)= |A∪B|
|A∩B|

 (2)

The Jaccard Index provides the percentage of the predicted samples that do
overlap with the actual samples. To quantify non-overlap, we can subtract the
Jaccard index by 1:

Nonoverlap = 1-J(A, B)	 (3)

Non–overlap results:

Jaccard Index=0.89
Nonoverlap = 0.11

According to the Jaccard Index, 89% of the samples overlap whereas 11% have
non-overlap. This makes the model’s performance quite impressive as it has quite
a high overlap percentage.

3.5 Synthesis and Analysis of The Results

The results show promising results as the model has high performance metrics
with an F1 score of 0.95 and a Mean Absolute Error of 0.053. This shows that not
only is the model extremely accurate, but it also performs equally well on both
classes: wildfire and non-wildfire. Furthermore, testing the model on real life
historical data of wildfires in Canada [25], showed that the model was able to
generalize well even beyond the test dataset. By using the Jaccard Index, we found
the model had a non-overlap of 0.11, which shows that 11% of the predicted
values didn’t match the actual values. The model can be improved further to
reduce this nonoverlap value which would increase its performance even more.
Looking at the performance metrics based on real-life applicability, predictive
power, and bias in the classes, the model is strong for its application.

3.6 Applications of the Model in the real world

The CNN model can be used to automatically predict land that is at risk of
wildfires and aid humans in marking areas susceptible to wildfires. Having this
knowledge beforehand can help us prevent wildfires and reduce its negative
consequences. Furthermore, our model allows the CNN to learn the features of
the 2 classes creates a strong pre-trained model. This pre-trained can then be used
as a base for fine-tuning for more specific use cases such as real-time monitoring

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2189

of wildfires from camera feed or drone-surveillance for wildfires. The pre-trained
model will ensure high accuracy for a fine-tuned model and will also result in lower
computational costs when training models for more specific use-cases in wildfire
prevention. Another key application of the CNN model is its ability to create a
system to update the land cover prone to wildfires overtime by running predictions
routinely. As time passes, areas-prone to wildfires change due to urban expansion.
Even so, with the CNN-based system in place, our knowledge of which areas are
prone to fires also updates automatically. This also narrows down the areas which
we need to pay attention to when looking out for wildfires.

4. CONCLUSION

Wildfires in Canada and all around the world have caused devastating damage to
human health and the environment. For this reason, preventing wildfires is crucial.
Using a convolutional neural network, I created an AI model that can take LULCC
satellite imaging as input and output a prediction of whether that area is prone to
wildfires or not. The convolutional neural network is useful as a deep learning
model it has a low testing loss of 0.1494 and a high accuracy of 0.9506, which
means that it can accurately predict whether land is susceptible to wildfires or not
with a minimal chance of error. Furthermore, after plotting a confusion matrix
and calculating the precision, recall, and F1 score for the model, the model proved
to be unbiased and capable of making accurate predictions for both categories
(wildfire and no wildfire). Training the CNN model on this data can help draw out
distinctive features in the 2 classes that may be hard to identify from the naked eye
such as the risk of wildfires in wildland-urban interface (WUI). Currently, the
model only uses data from Canadian vegetation. To make the model better in
terms of learned features, we can train the model with a much larger dataset from
data all around the world, making it learn better features. Furthermore, the model
was trained on clear images, but sometimes satellite imaging can be unclear due to
factors such as fog, false color, blurring, etc. If the model were to receive such
images as input, it wouldn’t be able to predict as well, so to improve the model,
we can use augmented and unclear images in the future. By harnessing the
predictive power of CNN models, we can improve early detection, enhance
resource allocation, and ultimately mitigate the impact of wildfires on both natural
ecosystems and human communities.

REFERENCES

[1] L. M. Zavala, R. de Celis, and A. Jordán, "How wildfires affect soil

properties. A brief review," Cuad. Investig. Geogr., vol. 40, no. 2, pp. 311–332,
2014. doi: 10.18172/CIG.2522

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2190 | Predicting Forest Areas Susceptible to Fire Risk Using Convolutional …..

[2] A. Nappi, P. Drapeau, and J. P. L. Savard, "Salvage logging after wildfire in
the boreal forest: Is it becoming a hot issue for wildlife?" Forestry Chron., vol.
80, no. 1, pp. 67–74, 2011. doi: 10.5558/TFC80067-1

[3] E. A. Keller, D. E. DeVecchio, and R. H. Blodgett, Natural Hazards: Earth’s
Processes as Hazards, Disasters, and Catastrophes, 2019. doi:
10.4324/9781315164298

[4] M. L. Childs et al., "Daily Local-Level Estimates of Ambient Wildfire
Smoke PM2.5 for the Contiguous US," Environ. Sci. Technol., vol. 56, no. 19,
pp. 13607–13621, 2022. doi: 10.1021/ACS.EST.2C02934

[5] R. Nasi, R. Dennis, E. Meijaard, G. Applegate, and P. Moore, "Forest fire
and biological diversity," Unasylva-FAO, pp. 36-40, 2002.

[6] T. N. Wasserman and S. E. Mueller, "Climate influences on future fire
severity: a synthesis of climate-fire interactions and impacts on fire regimes,
high-severity fire, and forests in the western United States," Fire Ecol., vol.
19, no. 1, pp. 1–22, 2023. doi: 10.1186/S42408-023-00200-8

[7] S. F. Fonji and G. N. Taff, "Using satellite data to monitor land-use land-
cover change in North-eastern Latvia," SpringerPlus, vol. 3, no. 1, pp. 1–15,
2014. doi: 10.1186/2193-1801-3-61

[8] N. Sisodiya, N. Dube, and P. Thakkar, "Next-Generation Artificial
Intelligence Techniques for Satellite Data Processing," in Remote Sens. Digit.
Image Process., vol. 24, pp. 235–254, 2020. doi: 10.1007/978-3-030-24178-
0_11

[9] N. R. Talukdar et al., "Forest fire estimation and risk prediction using
multispectral satellite images: Case study," Nat. Hazards Res., vol. 4, no. 2,
pp. 304–319, 2024. doi: 10.1016/J.NHRES.2024.01.007

[10] L. Alzubaidi et al., "Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions," J. Big Data, vol. 8, no. 1, pp. 1–
74, 2021. doi: 10.1186/S40537-021-00444-8

[1]] J. Wu, "Introduction to convolutional neural networks," Natl. Key Lab. Nov.
Softw. Technol., Nanjing Univ., China, vol. 5, no. 23, p. 495, 2017.

[12] Y. O. Sayad, H. Mousannif, and H. Al Moatassime, "Predictive modeling
of wildfires: A new dataset and machine learning approach," Fire Saf. J., vol.
104, pp. 130-146, 2019.

[13] R. Kanwal, W. Rafaqat, M. Iqbal, and S. Weiguo, "Data-Driven Approaches
for Wildfire Mapping and Prediction Assessment Using a Convolutional
Neural Network (CNN)," Remote Sens., vol. 15, no. 21, p. 5099, 2023.

[14] C. Nebauer, "Evaluation of convolutional neural networks for visual
recognition," IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 685-696, 1998.

[15] N. Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks
from Overfitting," J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[16] A. F. Agarap, "Deep Learning using Rectified Linear Units (ReLU)," arXiv
preprint arXiv:1803.08375, 2018.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ansh Gupta | 2191

[17] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, "Activation functions in
deep learning: A comprehensive survey and benchmark," Neurocomputing,
vol. 503, pp. 92–108, 2022. doi: 10.1016/j.neucom.2022.06.111

[18] D. Kinga and J. B. Adam, "A method for stochastic optimization," in Proc.
Int. Conf. Learn. Represent. (ICLR), vol. 5, p. 6, May 2015.

[19] K. Ding, N. Xiao, and K.-C. Toh, "Adam-family Methods with Decoupled
Weight Decay in Deep Learning," arXiv preprint arXiv:2310.08858, 2023.

[20] P. M. Radiuk, "Impact of Training Set Batch Size on the Performance of
Convolutional Neural Networks for Diverse Datasets," Inf. Technol. Manag.
Sci., vol. 20, no. 1, 2018. doi: 10.1515/ITMS-2017-0003

[21] S. A. Mnati, F. I. Hussein, and A. Issa, "Development of an ANN Model
for RGB Color Classification using the Dataset Extracted from a Fabricated
Colorimeter," Al-Khwarizmi Eng. J., vol. 19, no. 4, pp. 67-77, 2023.

[22] M. Yang et al., "Deep neural networks with L1 and L2 regularization for
high dimensional corporate credit risk prediction," Expert Syst. Appl., vol.
213, 118873, 2023. doi: 10.1016/J.ESWA.2022.118873

[23] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv
preprint arXiv:1609.04747, 2016.

[24] T. Hernández-Del-Toro, F. Martínez-Santiago, and A. Montejo-Ráez,
"Assessing classifier’s performance," in Biosignal Process. Classif. Using Comput.
Learn. Intell.: Princ., Algorithms, Appl., pp. 131–149, 2021. doi: 10.1016/B978-
0-12-820125-1.00018-X

[25] A. Rock and R. Malhoski, Mapping with ArcGIS Pro: Design Accurate and User-
Friendly Maps to Share the Story of Your Data. Packt Publishing Ltd., 2018.

