

Journal of Information Systems and Informatics

Vol. 6, No. 3, September 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935

DOI: 10.51519/journalisi.v6i3.783 Published By DRPM-UBD

1346

 This work is licensed under a Creative Commons Attribution 4.0 International License.

 An Experimental Study of The Efficacy of Prompting
Strategies In Guiding ChatGPT for A Computer

Programming Task

Nompilo Makhosi Mnguni1, Nkululeko Nkomo2, Kudakwashe
Maguraushe3, Murimo Bethel Mutanga4

1,2,3,4Department of Information and Communication Technology, Mangosuthu University of

Technology, Umlazi, Durban, South Africa

Email: 1mnguninompilo969@gmail.com, 2nkomonkululeko021@gmail.com,
3maguraushe.kuda@mut.ac.za, 4mutangamb@mut.ac.za

Abstract

In the rapidly advancing artificial intelligence (AI) era, optimizing language models such as
Chatbot Generative Pretrained Transformer (ChatGPT) for specialised tasks like
computer programming remains a mystery. There are numerous inconsistencies in the
quality and correctness of code generated by ChatGPT in programming. This study aims
to analyse how the different prompting strategies; text-to-code and code-to-code, impact
the output of ChatGPT's responses in programming tasks. The study adopted an
experimental design that presented ChatGPT with a diverse set of programming tasks and
prompts, spanning various programming languages, difficulty levels, and problem
domains. The generated outputs were rigorously tested and evaluated for accuracy, latency,
and qualitative aspects. The findings indicated that code-to-code prompting significantly
improved accuracy, achieving a 93.55% success rate compared to 29.03% for text-to-code.
Code-to-code prompts were particularly effective across all difficulty levels, while text-to-
code struggled, especially with harder tasks. Based on these findings, computer
programming students need to appreciate and comprehend that ChatGPT prompting is
essential for getting the desired output. Using optimised prompting methods, students can
achieve more accurate and efficient code generation, enhancing the quality of their code.
Future research should explore the balance between prompt specificity and code
efficiency, investigate additional prompting strategies, and develop best practices for
prompt design to optimize the use of AI in software development.

Keywords: artificial intelligence; ChatGPT; prompting strategies; quality; latency; difficulty
level

1. INTRODUCTION

Students generally perceive programming as one of the most challenging courses
[1], [2]. Firstly, novice programmers without any exposure and prior understanding
of programming concepts find it difficult [3], [4]. Although perceived as
demanding, programming requires strong analytical and reasoning skills to

https://doi.org/10.51519/journalisi.v6i2.759
https://doi.org/10.51519/journalisi.v6i3.783
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1347

understand its syntax, debug and write algorithms [5]–[7]. Not only does this
challenge lie with the lack of students' ability to solve problems, but it also involves
the ineffective use of teaching and learning material, including the effective use of
technology [8], [9]. In extreme instances, some students even develop negativity
about the programming course [10], creating a mental block towards effective
learning. Given the plethora of challenges students face when learning
programming, there is considerable interest in leveraging emerging technological
developments [11]. In recent years, large-scale language models (LLMs) have
garnered significant attention within the software development community for
their potential to automate various aspects of programming tasks [12]. They
exhibit several properties, including the ability to answer questions and generate
text, which makes them powerful tools [13].

Interacting with these LLMs, such as Chatbot Generative Pretrained Transformer
(ChatGPT), involves providing “prompts”—instructions used to provide context
to the LLM and guide its generation of textual responses—presenting a promising
avenue for aiding common software development and engineering tasks [14]. A
prompt is a sentence or short paragraph that initiates a task or text to be completed
by a language model through artificial intelligence (AI) technology [15]. Prompting
first emerged in NLP tasks in 2018 using a single dataset [16] and was fine-tuned
in 2021 with multiple datasets [17]. Text-to-code and code-to-code techniques
were proposed in 2022 and continue to be fine-tuned to this day [18]. The text-to-
code strategy involves providing natural language descriptions of programming
problems, while the code-to-code strategy involves providing partial code snippets
or hints to guide ChatGPT in generating code solutions [19].

Prompting strategies have emerged as crucial techniques influencing the
performance of ChatGPT, particularly in programming-related tasks such as code
generation, testing, and validation [20], [21]. They impact ChatGPT's performance,
especially in programming tasks like code generation, testing, and validation. The
importance of prompt design is underscored by several studies [15], [21]. These
studies emphasize the substantial influence of prompt design on the performance
of ChatGPT in code generation tasks, finding that carefully crafted prompts can
significantly improve the quality of output [19]. To this end, [15] even advocated
that teachers integrating AI language models like ChatGPT need to teach students
"prompt literacy" skills. Similarly, research has explored the application of
standard prompting techniques in an educational context and found that assigning
specific roles to ChatGPT, such as “teacher” or “instructor,” improved the
relevance of the generated lesson plans[22], [23] Detailed instructions and seed
words enhanced the clarity and focus of responses, resulting in more coherent,
logically structured, and engaging content [22].

Further contributions to understanding prompt design come from studies that
demonstrated the effectiveness of prompting strategies in enhancing ChatGPT's

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1348 | Exploration of The Efficacy of Prompting Strategies in Guiding Chatgpt for …..

performance in natural language processing (NLP) tasks [24]. Their findings
suggest that the principles applied in NLP could also benefit programming
assistance. Additionally, an evaluation of ChatGPT's capabilities as a fully
automated programming assistant focused on code generation, program repair,
and code summarization [19]. It was found that while ChatGPT excels at
generating accurate code for common tasks, it encounters difficulties with medium
to hard problems and longer prompts. These findings suggest that ChatGPT's
effectiveness is influenced by problem complexity and prompt design. Studies
show that ChatGPT achieves a high accuracy rate when relying on its internal
knowledge of health-related questions [25]–[27]. However, when prompted with
external evidence, accuracy drops, indicating the impact of prompt knowledge
[28]. It is important to note that despite GPT's impressive capabilities, it has the
potential to generate believable yet erroneous data, causing a blending of reality
and fiction [29].

Although numerous studies have presented significant insights and stressed the
impact of prompt strategies on accuracy, particularly in health-related situations,
there is little research focusing on prompt techniques in computer programming.
This study seeks to fill this void by exploring the impact of different prompting
strategies on the output of ChatGPT's responses in computer programming tasks.
Therefore, this research seeks to answer the question: How do different prompting
strategies influence the accuracy, difficulty and qualitative aspects of ChatGPT's
code generation in computer programming tasks?

The rest of the paper is structured as follows: Section 2 outlines the methodology
used, section 3 presents the findings and discussion, and the conclusions are given
in section 4.

2. METHODS

The study aimed to explore the efficacy of ChatGPT in using different prompting
strategies for programming-related tasks. This study adopted an experimental
research design to investigate the impact of various prompting strategies on the
performance and output of ChatGPT in programming tasks. The study employed
two main prompting strategies: text-to-code and code-to-code. To ensure a diverse
range of challenges, programming problems were sourced from HackerRank, a
platform known for its wide range of challenges that vary in difficulty, making it
an ideal source for a comprehensive assessment of ChatGPT’s performance [30].
The research will be guided by the six-step research design in Figure 1.

Step A: The first step is to have a clear definition of the objectives. This study
examines how different prompting strategies impact ChatGPT's accuracy and
efficiency in programming tasks. The goals are to assess accuracy, handle
difficulties, and qualitatively analyze generated code. The specific objectives are to

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1349

B - Select prompting
strategies.

F - Analyse results

A - Define research
objectives.

E - Evaluate
responses.

D - Generate
responses.

C - Choose
programming tasks.

• text-to-code

• code-to-code

• study objectives

• accuracy

• qualitative
analysis

• with ChatGPT

• from HackerRank

evaluate the accuracy, handle difficulty levels, and conduct a qualitative analysis of
the generated code.

Figure 1: Study research design

Step B: Two prompting strategies were analysed for comparison. Both the text-to-
code and code-to-code generation tasks were comprehensively evaluated for the
effectiveness of different prompting strategies [19]. By doing so, the method
enabled controlled manipulation of prompting strategies (independent variables)
to measure their impact on the accuracy of generated code (dependent variables).

a) Text-to-code Prompting: Provide the problem statement in plain English
and ask ChatGPT to generate the code.

b) Code-to-code Prompting: Presenting structured or partially completed
code to ChatGPT for completion or correction.

Step C: For our experiments, we used a dataset from HackerRank, an online
platform widely used for improving coding skills and preparing for technical
interviews through a vast array of programming challenges. The dataset comprises
problems categorized by difficulty levels—Easy, Medium, and Hard—covering

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1350 | Exploration of The Efficacy of Prompting Strategies in Guiding Chatgpt for …..

topics such as algorithms, data structures, mathematics, artificial intelligence,
databases, and functional programming. Each problem includes a detailed
description, input and output formats, and sample test cases. Solutions are
validated against sample and hidden test cases to ensure correctness (accuracy).

Step D: Create ChatGPT Responses
ChatGPT received text-to-code and code-to-code prompts for each task and
gathered its responses for evaluation. ChatGPT was tasked with generating
responses to the prompts for each programming problem obtained from
HackerRank, following the specific prompting approach. The generated responses
were then evaluated using test cases from the datasets to assess the accuracy. The
responses were carefully recorded alongside the prompting strategy for analysis.
Each produced response was tested against the labelled 1, 2, or 3 test cases from
HackerRank, depending on the available tests on the dataset.

Step E: The generated code responses were analyzed according to two primary
criteria i.e., accuracy and qualitative analysis:

a) Accuracy is measured by the degree of correctness displayed by the code
during testing against the given sample test cases [31]. Every response was
run to verify if it generated accurate outputs. We used the accuracy metric
to evaluate the accuracy of ChatGPT's responses. Accuracy was calculated
based on the performance of ChatGPT's generated solutions against the
provided test cases. The Equstion 1 is for accuracy [32]:

Accuracy = (
Number of Correct Test Cases

Total number of Test cases
) X 100% (1)

b) Qualitative analysis involved an exhaustive review of the code to uncover

recurring patterns, errors, and areas where the prompting technique had
an impact on the quality of the code.

During qualitative analysis, the given code snippets were examined to identify
ChatGPT trends. Based on the level of difficulty of the questions, it was
determined which levels of ChatGPT yield the best results. It also determines
whether the errors in the code snippets are common or uncommon. This
determination provides insights into the qualitative aspects of ChatGPT's code
generation capabilities, complementing the quantitative metrics of accuracy and
latency.

Step F: The findings were evaluated to derive conclusions on the efficacy of each
prompting strategy. The analysis encompassed a comparison of the accuracy
rates and qualitative aspects of the responses generated through the use of text-
to-code and code-to-code prompting strategies.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1351

3. RESULTS AND DISCUSSION

The study aimed to explore the efficacy of ChatGPT in using different prompting
strategies in programming-related tasks. The study found that the code-to-code
prompting strategy significantly improved accuracy compared to the text-to-code
strategy. The section below details the findings in terms of the efficacy of
ChatGPT in using the two different prompting strategies, text-to-code and code-
to-code, in terms of accuracy.

3.1 Accuracy

ChatGPT was given problem descriptions and was required to generate the code
from scratch. The results were populated for both the text-to-code and code-to-
code. Firstly, out of a total of 31 test cases, the text-to-code responses generated
by ChatGPT succeeded in passing only nine test cases, yielding an accuracy rate
of 29.03%. This relatively low accuracy rate can be attributed to several factors.
Firstly, generating code from textual problem descriptions involves complex
natural language understanding (NLU) tasks. The model must accurately interpret
the requirements, constraints, and other key aspects of the problem statement.
Any misunderstanding or ambiguity in the problem description can lead to
incorrect or incomplete code. Secondly, text-to-code generation requires the
model to comprehend the broader context and specifics of the problem. Large
language models, while powerful, may struggle with understanding the full context
and translating it into precise code logic. This process of converting natural
language into structured code requires robust knowledge representation. While
ChatGPT is trained on vast amounts of data, its training data may not always fully
capture the intricacies of specific coding problems. Additionally, small errors in
interpreting the problem description can propagate through the code generation
process, leading to incorrect outputs. Debugging such code requires iterative
refinement, which is challenging in a single interaction with the model. These
factors combined contribute to the lower success rate observed in the text-to-code
strategy.

In the code-to-code strategy, ChatGPT was provided with existing code snippets
and was tasked with modifying or completing them to meet the requirements. In
this regard, ChatGPT passed 29 out of the 31 test cases, resulting in a significantly
higher accuracy rate of 93.55%. This high accuracy rate can be attributed to several
factors. Firstly, with an existing code snippet, ChatGPT has a concrete starting
point, reducing the complexity of the task as the model focuses on making specific
changes rather than generating code from scratch. Moreover, the presence of
existing code also reduces the likelihood of fundamental errors, as the model can
leverage the structure and logic already present, making it easier to make accurate
modifications. Furthermore, large language models are adept at recognizing
patterns.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1352 | Exploration of The Efficacy of Prompting Strategies in Guiding Chatgpt for …..

Comparatively, the model can identify and replicate coding patterns and styles
from the existing snippet in code-to-code tasks, ensuring consistency and
correctness. Modifying code is a more constrained task than generating code from
scratch, allowing the model to focus on specific areas that need change and leading
to more precise and effective solutions. Lastly, the model has likely been trained
on numerous examples of code modifications, as these are common tasks in
programming resources and repositories. This extensive exposure improves its
capability in code-to-code tasks, contributing to the high success rate observed in
this strategy as compared to text-to-code tasks.

3.2 Difficulty Level Analysis

Accuracy was also calculated for each difficulty level individually, as shown in
Figure 2. The findings illustrate the differences in ChatGPT's responses between
the text-to-code and code-to-code prompting strategies across various difficulty
levels of programming tasks, codified as “easy”, “medium” and “hard”.

Figure 2. Results of the difficulty level

A detailed analysis of the difficulty levels was done for the efficacy of ChatGPT in
using the two prompting strategies. Firstly, in the text-to-code responses,
ChatGPT's code outputs were evaluated on a total of six test cases for easy tasks.
Only one test case was successfully passed, resulting in an accuracy rate of 16.67%.
This small percentage shows that ChatGPT had difficulty generating accurate
answers when only provided with natural language problem descriptions.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1353

Secondly, for medium tasks, ChatGPT's code outputs were evaluated on a total of
20 test cases. A total of eight test cases successfully passed, resulting in an accuracy
rate of 40%. This demonstrates that ChatGPT moderately encountered difficulties
in accurately producing solutions solely based on natural language descriptions.
Lastly, for hard tasks, ChatGPT's code outputs were evaluated on a total of five
test cases. However, none of the test cases passed, resulting in an accuracy rate of
0%. This highlights the major challenge ChatGPT faced while attempting to
resolve intricate issues with only natural language explanations. The relatively low
accuracy rates across all difficulty levels for the text-to-code strategy can be
attributed to the challenges in natural language understanding, contextual
comprehension, and error propagation. Generating code from textual descriptions
requires accurate interpretation of problem requirements, which is inherently
complex and prone to misunderstandings.

Code-to-code tasks were also evaluated. Firstly, ChatGPT's code outputs were
calculated on a total of six test cases for easy tasks. All test cases passed, resulting
in an accuracy rate of 100%. This indicates that giving ChatGPT partial code
snippets or clues greatly aided in producing accurate solutions for easier problems.
Secondly, ChatGPT's code outputs were evaluated on a total of 20 test cases for
medium tasks. A total of 18 cases successfully passed, resulting in an accuracy rate
of 90%. This continues to validate the usefulness of offering code suggestions or
incomplete code samples, even when the tasks become more complicated. Lastly,
for hard tasks, ChatGPT's code outputs were evaluated on a total of five test cases.
All test cases successfully passed, resulting in an accuracy rate of 100% for hard
tasks. This emphasizes the significant advantage of using partial code to direct
ChatGPT, allowing it to address and navigate through difficult tasks effectively.
The model's ability to leverage existing code structures can explain the high
accuracy rates across all difficulty levels for the code-to-code strategy. Starting with
partial code reduces complexity and the likelihood of fundamental errors, allowing
the model to make accurate modifications. Existing patterns and structures
significantly enhance the model’s performance in producing correct solutions.

3.3 Qualitative Analysis

The study also evaluated the efficacy of ChatGPT in using different prompting
strategies from a qualitative perspective. Some studies suggest that ChatGPT
might return only partial code when addressing bugs or filling in missing parts,
indicating a need for precise and comprehensive initial instructions to ensure the
output meets the full requirements [33]. However, crafting input prompts
thoughtfully enables researchers and developers to elicit more accurate, relevant,
and useful responses from these models [34]. When given code-to-code prompts,
ChatGPT sometimes returned only the portion of the code that needed fixing,
contained a bug, or was missing. This often necessitated a follow-up prompt, such
as "give me full code," to receive the complete code.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1354 | Exploration of The Efficacy of Prompting Strategies in Guiding Chatgpt for …..

3.4 Discussion

The study results underscore significant variations in the efficacy of text-to-code
and code-to-code prompting strategies in influencing ChatGPT's ability to
generate programming code. The code-to-code prompting strategy consistently
yielded higher precision and better-quality code in comparison to text-to-code
prompting. These findings can be attributed to several factors.

The code-to-code prompting strategy furnished structured guidance by providing
partial code snippets, which likely enhanced ChatGPT's interpretation and
understanding of the programming task context. These findings are consistent
with previous research, confirming that giving structured and specific prompts can
improve the performance of AI models like ChatGPT by restricting ambiguity and
directing the model's focus towards relevant aspects of the task [35], [36].

In the context of utilizing code-to-code prompting with ChatGPT for
programming tasks, additional guidance may be necessary to achieve the desired
comprehensive outcome, as suggested by [19]. This augments the desire to derive
maximum value from adopting AI technologies like ChatGPT within academia,
wherein a conceptual framework for guidance that espouses learning, research,
and study was developed [37]. ChatGPT tends to focus on the specific instructions
provided in the initial prompt, often prioritizing the delivery of an exact solution
for the bug or missing segment. Consequently, it might return only partial code,
addressing the issue directly without including the surrounding context or related
code.

It can also be noted that various prompting strategies significantly impact the
output of ChatGPT's responses in programming tasks. When provided with
existing code snippets (code-to-code prompting), ChatGPT is more effective at
generating accurate solutions compared to solely interpreting textual descriptions
of problems (text-to-code prompting). However, code generated from text-to-
code instructions compiles quicker than that from code-to-code scenarios, with
ChatGPT's text-to-code compilation being faster than HackerRank's, while
HackerRank's compilation is faster than code-to-code compilation. According to
the Khan Academy [38], the code with the least runtime is typically the most
efficient. Quality is ensured when the code does not produce errors, as a quick
runtime for faulty code would not count as high quality. Thus, error-free code is
essential for verifying code quality. Despite the advantages of code-to-code
prompting in understanding and modifying code, it may require additional
guidance to achieve the complete desired outcome. This research has observed
that ChatGPT might return only partial code when addressing bugs or filling in
missing parts, indicating a need for precise and comprehensive initial instructions
to ensure the output meets the full requirements.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1355

The qualitative examination of the generated code indicated that the use of code-
to-code prompts resulted in a code that was more logically structured and efficient.
This approach reduced the frequency of common errors, such as syntactical errors
and logical contradictions, which are frequently more prevalent in responses
generated by text-to-code prompts. The use of code-to-code prompts assists in
reducing these issues by presenting a more explicit framework for the model to
adhere to [39], [40].

The findings of this study have significant implications for the application of
AI such as ChatGPT in both the fields of education and programming.
Particularly in educational environments, giving students structured pieces of code
as prompts can improve their learning experience by providing clearer direction
and lowering the frustration that comes with vague instructions. Similarly, in
professional coding environments, the use of code-to-code prompting can
enhance the accuracy and efficacy of AI-assisted coding tools, potentially boosting
productivity and reducing rates of errors [41], [42].

4. CONCLUSION

This study examined the impact of text-to-code and code-to-code prompting
strategies on ChatGPT's performance in programming tasks. The findings
indicated that code-to-code prompting significantly improved accuracy, achieving
a 93.55% success rate compared to 29.03% for text-to-code. Code-to-code
prompts were particularly effective across all difficulty levels, while text-to-code
struggled, especially with harder tasks. Although text-to-code compilation was
faster, code-to-code prompts yielded more accurate and comprehensive solutions,
highlighting a trade-off between speed and accuracy. The study underscores the
importance of prompt design in optimizing ChatGPT's utility for programming,
suggesting that detailed and specific prompts enhance performance. This study
presented evidence that code-to-code prompting significantly increases the
accuracy and quality of ChatGPT's code generation as compared to text-to-code
prompting, as illustrated by a higher rate of accuracy in test scenarios and the
production of more logically structured, efficient code with fewer errors. This
study contributes to understanding how different prompting strategies affect
ChatGPT's performance in programming tasks. It highlights the importance of
prompt design in achieving accurate and efficient code generation, providing
valuable insights for optimizing the use of LLMs in software development.

Future research could further explore the balance between prompt specificity and
code efficiency, investigate other prompting strategies, and assess their
applicability across a broader range of programming challenges. Developing best
practices for prompt design could also enhance the utility of LLMs like ChatGPT
in various programming contexts. By shedding light on the effectiveness of
different prompting strategies, this study provides a foundation for optimizing the

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1356 | Exploration of The Efficacy of Prompting Strategies in Guiding Chatgpt for …..

use of ChatGPT and similar LLMs in programming assistance, contributing to
more efficient and accurate software development processes.

REFERENCES

[1] J. Msane, M. B. Mutanga, and T. Chani, ‘Students’ Perception of the effect

of cognitive factors in determining student’s success in computer
programming’, J. Theor. Appl. Inf. Technol., vol. 98, no. 17, pp. 3607–3618,
2020.

[2] M. Thuné and A. Eckerdal, ‘Analysis of Students’ learning of computer
programming in a computer laboratory context’, Eur. J. Eng. Educ., vol. 44,
no. 5, pp. 769–786, 2019, doi: 10.1080/03043797.2018.1544609.

[3] B. S. Javier, ‘Understanding their Voices from Within: Difficulties and Code
Comprehension of Life-Long Novice Programmers’, Int. J. Arts, vol. 1, no.
1, pp. 53–76, 2021.

[4] M. B. Mutanga, P. X. Piyose, and L. S. Ndovela, ‘Factors Affecting Career

Preferences and Pathways : Insights from IT Students’, J. Inf. Syst. Informatics,
vol. 5, no. 3, pp. 1111–1122, 2023, doi: 10.51519/journalisi.v5i3.556.

[5] N. Islam, G. Shafi Sheikh, R. Fatima, and F. Alvi, ‘A Study of Difficulties
of Students in Learning Programming’, J. Educ. Soc. Sci., vol. 7, no. 2, pp.
38–46, 2019, doi: 10.20547/jess0721907203.

[6] E. Y. İnce, ‘Students’ Perceptions on Learning Programming with
CodinGame’, Int. J. Technol. Teach. Learn., vol. 17, no. 1, pp. 38–46, 2021,
doi: 10.37120/ijttl.2021.17.1.03.

[7] D. A. Egbe, B. M. Mutanga, and T. Chani, ‘Combating Digital Academic
Dishonesty: A Scoping Review of Approaches’, no. April, 2021, doi:
10.35940/ijeat.F1268.089620.

[8] C. S. Cheah, ‘Factors contributing to the difficulties in teaching and learning
of computer programming: A literature review’, Contemp. Educ. Technol., vol.
12, no. 2, pp. 1–14, 2020, doi: 10.30935/cedtech/8247.

[9] M. B. Mutanga, ‘The effect of cognitive factors in determining studens’
success in computer programming’, J. Theor. Appl. Inf. Technol., vol. 98, no.
17, pp. 3607–3618, 2020.

[10] C.-H. ; Lai, Y.-K. ; Chen, and Y. Wang, ‘Learning Computer Programming
for Students with Medical Fields of’, Int. J. Environ. Reasearch Public Heal.,
vol. 19, pp. 1–17, 2022, doi: 10.3390/ijerph19106005

[11] W. Takerngsaksiri, C. Warusavitarne, C. Yaacoub, M. H. K. Hou, and C.
Tantithamthavorn, ‘Students’ Perspective on AI Code Completion:
Benefits and Challenges’, arXiv.org, pp. 1–6, 2023.

[12] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, ‘ChatGPT
Prompt Patterns for Improving Code Quality, Refactoring, Requirements
Elicitation, and Software Design’, arXiv:2303.07839, pp. 1–35, 2023.

[13] R. Jagerman, H. Zhuang, Z. Qin, X. Wang, and M. Bendersky, Query

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1357

Expansion by Prompting Large Language Models, vol. 1, no. 1. Association for
Computing Machinery, 2023.

[14] E. Kadir, T. Rahman, and S. Barman, ‘Exploring the Competency of
ChatGPT in Solving Competitive Programming Challenges’, Int. J. Adv.
Trends Comput. Sci. Eng., vol. 13, no. 1, pp. 13–23, 2023, doi:
10.30534/ijatcse/2024/031312024.

[15] R. Yilmaz and F. G. Karaoglan Yilmaz, ‘Augmented intelligence in
programming learning: Examining student views on the use of ChatGPT
for programming learning’, Comput. Hum. Behav. Artif. Humans, vol. 1, no. 2,
p. 100005, 2023, doi: 10.1016/j.chbah.2023.100005.

[16] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, ‘The Natural Language
Decathlon: Multitask Learning as Question Answering’, arXiv, pp. 1–23,
2018.

[17] V. Sanh et al., ‘Multitask Prompted Training Enables Zero-Shot Task
Generalization’, in ICLR 2022 - 10th International Conference on Learning
Representations, 2022.

[18] S. H. Bach et al., ‘PromptSource: An Integrated Development Environment
and Repository for Natural Language Prompts’, in Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2022, pp. 93–104. doi:
10.18653/v1/2022.acl-demo.9.

[19] C. Liu et al., ‘Improving ChatGPT Prompt for Code Generation’, arXiv, pp.
1–12, 2023.

[20] S. Wang and P. Jin, ‘A Brief Summary of Prompting in Using GPT Models’,
Qeios, no. April, 2023, doi: 10.32388/IMZI2Q.

[21] T. Lehtinen, C. Koutcheme, and A. Hellas, Let’s Ask AI About Their
Programs: Exploring ChatGPT’s Answers To Program Comprehension Questions,
vol. 1, no. 1. Association for Computing Machinery, 2024. doi:
10.1145/3639474.3640058.

[22] A. J. Spasic and D. S. Jankovic, ‘Using ChatGPT Standard Prompt
Engineering Techniques in Lesson Preparation: Role, Instructions and
Seed-Word Prompts’, in 2023 58th International Scientific Conference on
Information, Communication and Energy Systems and Technologies, ICEST 2023 -
Proceedings, IEEE, 2023, pp. 47–50. doi:
10.1109/ICEST58410.2023.10187269.

[23] G. van den Berg and E. du Plessis, ‘ChatGPT and Generative AI:
Possibilities for Its Contribution to Lesson Planning, Critical Thinking and
Openness in Teacher Education’, Educ. Sci., vol. 13, no. 10, 2023, doi:
10.3390/educsci13100998.

[24] X. Sun et al., ‘Pushing the Limits of ChatGPT on NLP Tasks’, ArXiv, pp.
1–26, 2023.

[25] A. Suárez, V. Díaz-Flores García, J. Algar, M. Gómez Sánchez, M.
Llorente de Pedro, and Y. Freire, ‘Unveiling the ChatGPT phenomenon:
Evaluating the consistency and accuracy of endodontic question answers’,
Int. Endod. J., vol. 57, no. 1, pp. 108–113, 2024, doi: 10.1111/iej.13985.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

1358 | Exploration of The Efficacy of Prompting Strategies in Guiding Chatgpt for …..

[26] K. Kusunose, S. Kashima, and M. Sata, ‘Evaluation of the Accuracy of
ChatGPT in Answering Clinical Questions on the Japanese Society of
Hypertension Guidelines’, Circ. J., vol. 87, no. 7, pp. 1030–1033, 2023, doi:
10.1253/circj.CJ-23-0308.

[27] Y. Kaneda et al., ‘Evaluating ChatGPT’s effectiveness and tendencies in
Japanese internal medicine’, J. Eval. Clin. Pract., no. April, pp. 1–7, 2024, doi:
10.1111/jep.14011.

[28] G. Zuccon and B. Koopman, Dr ChatGPT, tell me what I want to hear: How
prompt knowledge impacts health answer correctness, vol. 1, no. 1. Association for
Computing Machinery, 2023.

[29] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, ‘On the
dangers of stochastic parrots: Can language models be too big?’, in
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, 2021, pp. 610–623. doi: 10.1145/3442188.3445922.

[30] HackerRank, ‘HackerRank’, 2024. https://www.hackerrank.com/
(accessed Jun. 26, 2024).

[31] K. Buffardi and P. Valdivia, ‘Measuring Unit Test Accuracy’, in 50th ACM
Technical Symposium on Computer Science Education, 2019, pp. 578–584. doi:
10.1145/3287324.3287351.

[32] Tricentis, ‘64 essential testing metrics for measuring quality assurance
success.’, 2016. https://www.tricentis.com/blog/64-essential-testing-
metrics-for-measuring-quality-assurance-success (accessed Jun. 04, 2024).

[33] J. Cao, M. Li, M. Wen, and S. Cheung, A study on Prompt Design, Advantages
and Limitations of ChatGPT for Deep Learning Program Repair, vol. 1, no. 1.
Association for Computing Machinery, 2023.

[34] N. Mungoli, ‘Exploring the Synergy of Prompt Engineering and
Reinforcement Learning for Enhanced Control and Responsiveness in
Chat GPT’, J. Electr. Electron. Eng., vol. 2, no. 3, pp. 201–205, 2023, doi:
10.33140/jeee.02.03.02.

[35] T. B. Brown et al., ‘Language Models are Few-Shot Learners’, no. NeurIPS,
2020.

[36] X. Liu et al., ‘GPT Understands, Too’, AI Open, 2023, doi:
10.1016/j.aiopen.2023.08.012.

[37] S. Dube et al., Students’ Perceptions of ChatGPT in Education: A Rapid Systematic
Literature Review, vol. 4, no. 1. Springer Nature, 2024. doi:
10.3390/proceedings47010031.

[38] Khan Academy, ‘Categorizing run time efficiency’, 2024.
https://www.khanacademy.org/computing/ap-computer-science-
principles/algorithms-101/evaluating-algorithms/a/comparing-run-time-
efficiency (accessed Jun. 26, 2024).

[39] S. Sivarajkumar, M. Kelley, A. Samolyk-mazzanti, S. Visweswaran, and Y.
Wang, ‘An Empirical Evaluation of Prompting Strategies for Large
Language Models in Zero-Shot Clinical Natural Language Processing’,
EJMIR Med. Informatics, vol. 12, 2023, doi: 10.2196/55318.

Journal of Information Systems and Informatics
Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Nompilo Makhosi Mnguni, Nkululeko Nkomo, at all | 1359

[40] M. Chen et al., ‘Evaluating Large Language Models Trained on Code’, arXiv
Prepr., 2021.

[41] R. Yilmaz, F. Gizem, and K. Yilmaz, ‘The effect of generative artificial
intelligence (AI) based tool use on students’ computational thinking skills,
programming self-efficacy and motivation’, Comput. Educ. Artif. Intell., vol.
4, pp. 1–14, 2023, doi: 10.1016/j.caeai.2023.100147.

[42] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, ‘The Impact of AI on

Developer Productivity : Evidence from GitHub Copilot arXiv : 2302 .
06590v1 [cs . SE] 13 Feb 2023’, arXiv Prepr., pp. 1–19, 2023.

