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Abstract 

 
In the rapidly advancing artificial intelligence (AI) era, optimizing language models such as 
Chatbot Generative Pretrained Transformer (ChatGPT) for specialised tasks like 
computer programming remains a mystery. There are numerous inconsistencies in the 
quality and correctness of code generated by ChatGPT in programming. This study aims 
to analyse how the different prompting strategies; text-to-code and code-to-code, impact 
the output of ChatGPT's responses in programming tasks. The study adopted an 
experimental design that presented ChatGPT with a diverse set of programming tasks and 
prompts, spanning various programming languages, difficulty levels, and problem 
domains. The generated outputs were rigorously tested and evaluated for accuracy, latency, 
and qualitative aspects. The findings indicated that code-to-code prompting significantly 
improved accuracy, achieving a 93.55% success rate compared to 29.03% for text-to-code. 
Code-to-code prompts were particularly effective across all difficulty levels, while text-to-
code struggled, especially with harder tasks. Based on these findings, computer 
programming students need to appreciate and comprehend that ChatGPT prompting is 
essential for getting the desired output. Using optimised prompting methods, students can 
achieve more accurate and efficient code generation, enhancing the quality of their code. 
Future research should explore the balance between prompt specificity and code 
efficiency, investigate additional prompting strategies, and develop best practices for 
prompt design to optimize the use of AI in software development. 
 
Keywords: artificial intelligence; ChatGPT; prompting strategies; quality; latency; difficulty 
level 

 
1. INTRODUCTION  
 
Students generally perceive programming as one of the most challenging courses 
[1], [2]. Firstly, novice programmers without any exposure and prior understanding 
of programming concepts find it difficult [3], [4]. Although perceived as 
demanding, programming requires strong analytical and reasoning skills to 
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understand its syntax, debug and write algorithms [5]–[7]. Not only does this 
challenge lie with the lack of students' ability to solve problems, but it also involves 
the ineffective use of teaching and learning material, including the effective use of 
technology [8], [9]. In extreme instances, some students even develop negativity 
about the programming course [10], creating a mental block towards effective 
learning. Given the plethora of challenges students face when learning 
programming, there is considerable interest in leveraging emerging technological 
developments [11]. In recent years, large-scale language models (LLMs) have 
garnered significant attention within the software development community for 
their potential to automate various aspects of programming tasks [12]. They 
exhibit several properties, including the ability to answer questions and generate 
text, which makes them powerful tools [13].  
 
Interacting with these LLMs, such as Chatbot Generative Pretrained Transformer 
(ChatGPT), involves providing “prompts”—instructions used to provide context 
to the LLM and guide its generation of textual responses—presenting a promising 
avenue for aiding common software development and engineering tasks [14]. A 
prompt is a sentence or short paragraph that initiates a task or text to be completed 
by a language model through artificial intelligence (AI) technology [15]. Prompting 
first emerged in NLP tasks in 2018 using a single dataset [16] and was fine-tuned 
in 2021 with multiple datasets [17]. Text-to-code and code-to-code techniques 
were proposed in 2022 and continue to be fine-tuned to this day [18]. The text-to-
code strategy involves providing natural language descriptions of programming 
problems, while the code-to-code strategy involves providing partial code snippets 
or hints to guide ChatGPT in generating code solutions [19].  
 
Prompting strategies have emerged as crucial techniques influencing the 
performance of ChatGPT, particularly in programming-related tasks such as code 
generation, testing, and validation [20], [21]. They impact ChatGPT's performance, 
especially in programming tasks like code generation, testing, and validation. The 
importance of prompt design is underscored by several studies [15], [21]. These 
studies emphasize the substantial influence of prompt design on the performance 
of ChatGPT in code generation tasks, finding that carefully crafted prompts can 
significantly improve the quality of output [19]. To this end, [15] even advocated 
that teachers integrating AI language models like ChatGPT need to teach students 
"prompt literacy" skills. Similarly, research has explored the application of 
standard prompting techniques in an educational context and found that assigning 
specific roles to ChatGPT, such as “teacher” or “instructor,” improved the 
relevance of the generated lesson plans[22], [23] Detailed instructions and seed 
words enhanced the clarity and focus of responses, resulting in more coherent, 
logically structured, and engaging content [22]. 
 
Further contributions to understanding prompt design come from studies that 
demonstrated the effectiveness of prompting strategies in enhancing ChatGPT's 
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performance in natural language processing (NLP) tasks [24]. Their findings 
suggest that the principles applied in NLP could also benefit programming 
assistance. Additionally, an evaluation of ChatGPT's capabilities as a fully 
automated programming assistant focused on code generation, program repair, 
and code summarization [19]. It was found that while ChatGPT excels at 
generating accurate code for common tasks, it encounters difficulties with medium 
to hard problems and longer prompts. These findings suggest that ChatGPT's 
effectiveness is influenced by problem complexity and prompt design. Studies 
show that ChatGPT achieves a high accuracy rate when relying on its internal 
knowledge of health-related questions [25]–[27]. However, when prompted with 
external evidence, accuracy drops, indicating the impact of prompt knowledge 
[28]. It is important to note that despite GPT's impressive capabilities, it has the 
potential to generate believable yet erroneous data, causing a blending of reality 
and fiction [29]. 
 
Although numerous studies have presented significant insights and stressed the 
impact of prompt strategies on accuracy, particularly in health-related situations, 
there is little research focusing on prompt techniques in computer programming. 
This study seeks to fill this void by exploring the impact of different prompting 
strategies on the output of ChatGPT's responses in computer programming tasks. 
Therefore, this research seeks to answer the question: How do different prompting 
strategies influence the accuracy, difficulty and qualitative aspects of ChatGPT's 
code generation in computer programming tasks? 
 
The rest of the paper is structured as follows: Section 2 outlines the methodology 
used, section 3 presents the findings and discussion, and the conclusions are given 
in section 4.  
 
2. METHODS 
 
The study aimed to explore the efficacy of ChatGPT in using different prompting 
strategies for programming-related tasks. This study adopted an experimental 
research design to investigate the impact of various prompting strategies on the 
performance and output of ChatGPT in programming tasks. The study employed 
two main prompting strategies: text-to-code and code-to-code. To ensure a diverse 
range of challenges, programming problems were sourced from HackerRank, a 
platform known for its wide range of challenges that vary in difficulty, making it 
an ideal source for a comprehensive assessment of ChatGPT’s performance [30]. 
The research will be guided by the six-step research design in Figure 1. 
 
Step A: The first step is to have a clear definition of the objectives. This study 
examines how different prompting strategies impact ChatGPT's accuracy and 
efficiency in programming tasks. The goals are to assess accuracy, handle 
difficulties, and qualitatively analyze generated code. The specific objectives are to 
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B - Select prompting 
strategies. 

F - Analyse results 

A - Define research 
objectives. 

E - Evaluate 
responses. 

D - Generate 
responses. 

C - Choose 
programming tasks. 

• text-to-code 

• code-to-code 

• study objectives 

• accuracy 

• qualitative 
analysis 

• with ChatGPT 

• from HackerRank 

evaluate the accuracy, handle difficulty levels, and conduct a qualitative analysis of 
the generated code. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Study research design 
 
Step B: Two prompting strategies were analysed for comparison. Both the text-to-
code and code-to-code generation tasks were comprehensively evaluated for the 
effectiveness of different prompting strategies [19]. By doing so, the method 
enabled controlled manipulation of prompting strategies (independent variables) 
to measure their impact on the accuracy of generated code (dependent variables). 
 

a) Text-to-code Prompting: Provide the problem statement in plain English 
and ask ChatGPT to generate the code. 

b) Code-to-code Prompting: Presenting structured or partially completed 
code to ChatGPT for completion or correction. 

 
Step C: For our experiments, we used a dataset from HackerRank, an online 
platform widely used for improving coding skills and preparing for technical 
interviews through a vast array of programming challenges. The dataset comprises 
problems categorized by difficulty levels—Easy, Medium, and Hard—covering 
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topics such as algorithms, data structures, mathematics, artificial intelligence, 
databases, and functional programming. Each problem includes a detailed 
description, input and output formats, and sample test cases. Solutions are 
validated against sample and hidden test cases to ensure correctness (accuracy). 
 
Step D: Create ChatGPT Responses 
ChatGPT received text-to-code and code-to-code prompts for each task and 
gathered its responses for evaluation. ChatGPT was tasked with generating 
responses to the prompts for each programming problem obtained from 
HackerRank, following the specific prompting approach. The generated responses 
were then evaluated using test cases from the datasets to assess the accuracy. The 
responses were carefully recorded alongside the prompting strategy for analysis. 
Each produced response was tested against the labelled 1, 2, or 3 test cases from 
HackerRank, depending on the available tests on the dataset. 
 
Step E: The generated code responses were analyzed according to two primary 
criteria i.e., accuracy and qualitative analysis: 

a) Accuracy is measured by the degree of correctness displayed by the code 
during testing against the given sample test cases [31]. Every response was 
run to verify if it generated accurate outputs. We used the accuracy metric 
to evaluate the accuracy of ChatGPT's responses. Accuracy was calculated 
based on the performance of ChatGPT's generated solutions against the 
provided test cases. The Equstion 1 is for accuracy [32]: 

 

Accuracy = ( 
Number of Correct Test Cases

Total number of Test cases
 ) X  100%  (1) 

 
b) Qualitative analysis involved an exhaustive review of the code to uncover 

recurring patterns, errors, and areas where the prompting technique had 
an impact on the quality of the code. 

 
During qualitative analysis, the given code snippets were examined to identify 
ChatGPT trends. Based on the level of difficulty of the questions, it was 
determined which levels of ChatGPT yield the best results. It also determines 
whether the errors in the code snippets are common or uncommon. This 
determination provides insights into the qualitative aspects of ChatGPT's code 
generation capabilities, complementing the quantitative metrics of accuracy and 
latency. 
 
Step F: The findings were evaluated to derive conclusions on the efficacy of each 
prompting strategy. The analysis encompassed a comparison of the accuracy 
rates and qualitative aspects of the responses generated through the use of text-
to-code and code-to-code prompting strategies. 
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3. RESULTS AND DISCUSSION 
 
The study aimed to explore the efficacy of ChatGPT in using different prompting 
strategies in programming-related tasks. The study found that the code-to-code 
prompting strategy significantly improved accuracy compared to the text-to-code 
strategy. The section below details the findings in terms of the efficacy of 
ChatGPT in using the two different prompting strategies, text-to-code and code-
to-code, in terms of accuracy. 
 
3.1 Accuracy  

 
ChatGPT was given problem descriptions and was required to generate the code 
from scratch. The results were populated for both the text-to-code and code-to-
code. Firstly, out of a total of 31 test cases, the text-to-code responses generated 
by ChatGPT succeeded in passing only nine test cases, yielding an accuracy rate 
of 29.03%. This relatively low accuracy rate can be attributed to several factors. 
Firstly, generating code from textual problem descriptions involves complex 
natural language understanding (NLU) tasks. The model must accurately interpret 
the requirements, constraints, and other key aspects of the problem statement. 
Any misunderstanding or ambiguity in the problem description can lead to 
incorrect or incomplete code. Secondly, text-to-code generation requires the 
model to comprehend the broader context and specifics of the problem. Large 
language models, while powerful, may struggle with understanding the full context 
and translating it into precise code logic. This process of converting natural 
language into structured code requires robust knowledge representation. While 
ChatGPT is trained on vast amounts of data, its training data may not always fully 
capture the intricacies of specific coding problems. Additionally, small errors in 
interpreting the problem description can propagate through the code generation 
process, leading to incorrect outputs. Debugging such code requires iterative 
refinement, which is challenging in a single interaction with the model. These 
factors combined contribute to the lower success rate observed in the text-to-code 
strategy. 
 
In the code-to-code strategy, ChatGPT was provided with existing code snippets 
and was tasked with modifying or completing them to meet the requirements. In 
this regard, ChatGPT passed 29 out of the 31 test cases, resulting in a significantly 
higher accuracy rate of 93.55%. This high accuracy rate can be attributed to several 
factors. Firstly, with an existing code snippet, ChatGPT has a concrete starting 
point, reducing the complexity of the task as the model focuses on making specific 
changes rather than generating code from scratch. Moreover, the presence of 
existing code also reduces the likelihood of fundamental errors, as the model can 
leverage the structure and logic already present, making it easier to make accurate 
modifications. Furthermore, large language models are adept at recognizing 
patterns.  
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Comparatively, the model can identify and replicate coding patterns and styles 
from the existing snippet in code-to-code tasks, ensuring consistency and 
correctness. Modifying code is a more constrained task than generating code from 
scratch, allowing the model to focus on specific areas that need change and leading 
to more precise and effective solutions. Lastly, the model has likely been trained 
on numerous examples of code modifications, as these are common tasks in 
programming resources and repositories. This extensive exposure improves its 
capability in code-to-code tasks, contributing to the high success rate observed in 
this strategy as compared to text-to-code tasks. 
 
3.2 Difficulty Level Analysis 
 
Accuracy was also calculated for each difficulty level individually, as shown in 
Figure 2. The findings illustrate the differences in ChatGPT's responses between 
the text-to-code and code-to-code prompting strategies across various difficulty 
levels of programming tasks, codified as “easy”, “medium” and “hard”. 
 

 

 
Figure 2. Results of the difficulty level  

 
A detailed analysis of the difficulty levels was done for the efficacy of ChatGPT in 
using the two prompting strategies. Firstly, in the text-to-code responses, 
ChatGPT's code outputs were evaluated on a total of six test cases for easy tasks. 
Only one test case was successfully passed, resulting in an accuracy rate of 16.67%. 
This small percentage shows that ChatGPT had difficulty generating accurate 
answers when only provided with natural language problem descriptions. 
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Secondly, for medium tasks, ChatGPT's code outputs were evaluated on a total of 
20 test cases. A total of eight test cases successfully passed, resulting in an accuracy 
rate of 40%. This demonstrates that ChatGPT moderately encountered difficulties 
in accurately producing solutions solely based on natural language descriptions. 
Lastly, for hard tasks, ChatGPT's code outputs were evaluated on a total of five 
test cases. However, none of the test cases passed, resulting in an accuracy rate of 
0%. This highlights the major challenge ChatGPT faced while attempting to 
resolve intricate issues with only natural language explanations. The relatively low 
accuracy rates across all difficulty levels for the text-to-code strategy can be 
attributed to the challenges in natural language understanding, contextual 
comprehension, and error propagation. Generating code from textual descriptions 
requires accurate interpretation of problem requirements, which is inherently 
complex and prone to misunderstandings. 
 
Code-to-code tasks were also evaluated. Firstly, ChatGPT's code outputs were 
calculated on a total of six test cases for easy tasks. All test cases passed, resulting 
in an accuracy rate of 100%. This indicates that giving ChatGPT partial code 
snippets or clues greatly aided in producing accurate solutions for easier problems. 
Secondly, ChatGPT's code outputs were evaluated on a total of 20 test cases for 
medium tasks. A total of 18 cases successfully passed, resulting in an accuracy rate 
of 90%. This continues to validate the usefulness of offering code suggestions or 
incomplete code samples, even when the tasks become more complicated. Lastly, 
for hard tasks, ChatGPT's code outputs were evaluated on a total of five test cases. 
All test cases successfully passed, resulting in an accuracy rate of 100% for hard 
tasks. This emphasizes the significant advantage of using partial code to direct 
ChatGPT, allowing it to address and navigate through difficult tasks effectively. 
The model's ability to leverage existing code structures can explain the high 
accuracy rates across all difficulty levels for the code-to-code strategy. Starting with 
partial code reduces complexity and the likelihood of fundamental errors, allowing 
the model to make accurate modifications. Existing patterns and structures 
significantly enhance the model’s performance in producing correct solutions. 
 
3.3 Qualitative Analysis 
 
The study also evaluated the efficacy of ChatGPT in using different prompting 
strategies from a qualitative perspective. Some studies suggest that ChatGPT 
might return only partial code when addressing bugs or filling in missing parts, 
indicating a need for precise and comprehensive initial instructions to ensure the 
output meets the full requirements [33]. However, crafting input prompts 
thoughtfully enables researchers and developers to elicit more accurate, relevant, 
and useful responses from these models [34]. When given code-to-code prompts, 
ChatGPT sometimes returned only the portion of the code that needed fixing, 
contained a bug, or was missing. This often necessitated a follow-up prompt, such 
as "give me full code," to receive the complete code.  
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3.4 Discussion 
 
The study results underscore significant variations in the efficacy of text-to-code 
and code-to-code prompting strategies in influencing ChatGPT's ability to 
generate programming code. The code-to-code prompting strategy consistently 
yielded higher precision and better-quality code in comparison to text-to-code 
prompting. These findings can be attributed to several factors. 
 
The code-to-code prompting strategy furnished structured guidance by providing 
partial code snippets, which likely enhanced ChatGPT's interpretation and 
understanding of the programming task context. These findings are consistent 
with previous research, confirming that giving structured and specific prompts can 
improve the performance of AI models like ChatGPT by restricting ambiguity and 
directing the model's focus towards relevant aspects of the task [35], [36]. 
 
In the context of utilizing code-to-code prompting with ChatGPT for 
programming tasks, additional guidance may be necessary to achieve the desired 
comprehensive outcome, as suggested by [19]. This augments the desire to derive 
maximum value from adopting AI technologies like ChatGPT within academia, 
wherein a conceptual framework for guidance that espouses learning, research, 
and study was developed [37]. ChatGPT tends to focus on the specific instructions 
provided in the initial prompt, often prioritizing the delivery of an exact solution 
for the bug or missing segment. Consequently, it might return only partial code, 
addressing the issue directly without including the surrounding context or related 
code.  
 
It can also be noted that various prompting strategies significantly impact the 
output of ChatGPT's responses in programming tasks. When provided with 
existing code snippets (code-to-code prompting), ChatGPT is more effective at 
generating accurate solutions compared to solely interpreting textual descriptions 
of problems (text-to-code prompting). However, code generated from text-to-
code instructions compiles quicker than that from code-to-code scenarios, with 
ChatGPT's text-to-code compilation being faster than HackerRank's, while 
HackerRank's compilation is faster than code-to-code compilation. According to 
the Khan Academy [38], the code with the least runtime is typically the most 
efficient. Quality is ensured when the code does not produce errors, as a quick 
runtime for faulty code would not count as high quality. Thus, error-free code is 
essential for verifying code quality. Despite the advantages of code-to-code 
prompting in understanding and modifying code, it may require additional 
guidance to achieve the complete desired outcome. This research has observed 
that ChatGPT might return only partial code when addressing bugs or filling in 
missing parts, indicating a need for precise and comprehensive initial instructions 
to ensure the output meets the full requirements. 
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The qualitative examination of the generated code indicated that the use of code-
to-code prompts resulted in a code that was more logically structured and efficient. 
This approach reduced the frequency of common errors, such as syntactical errors 
and logical contradictions, which are frequently more prevalent in responses 
generated by text-to-code prompts. The use of code-to-code prompts assists in 
reducing these issues by presenting a more explicit framework for the model to 
adhere to [39], [40]. 
 
The findings of this study have significant implications for the application of 
AI such as ChatGPT in both the fields of education and programming. 
Particularly in educational environments, giving students structured pieces of code 
as prompts can improve their learning experience by providing clearer direction 
and lowering the frustration that comes with vague instructions. Similarly, in 
professional coding environments, the use of code-to-code prompting can 
enhance the accuracy and efficacy of AI-assisted coding tools, potentially boosting 
productivity and reducing rates of errors [41], [42]. 

 
4. CONCLUSION 
 
This study examined the impact of text-to-code and code-to-code prompting 
strategies on ChatGPT's performance in programming tasks. The findings 
indicated that code-to-code prompting significantly improved accuracy, achieving 
a 93.55% success rate compared to 29.03% for text-to-code. Code-to-code 
prompts were particularly effective across all difficulty levels, while text-to-code 
struggled, especially with harder tasks. Although text-to-code compilation was 
faster, code-to-code prompts yielded more accurate and comprehensive solutions, 
highlighting a trade-off between speed and accuracy. The study underscores the 
importance of prompt design in optimizing ChatGPT's utility for programming, 
suggesting that detailed and specific prompts enhance performance. This study 
presented evidence that code-to-code prompting significantly increases the 
accuracy and quality of ChatGPT's code generation as compared to text-to-code 
prompting, as illustrated by a higher rate of accuracy in test scenarios and the 
production of more logically structured, efficient code with fewer errors. This 
study contributes to understanding how different prompting strategies affect 
ChatGPT's performance in programming tasks. It highlights the importance of 
prompt design in achieving accurate and efficient code generation, providing 
valuable insights for optimizing the use of LLMs in software development. 
 
Future research could further explore the balance between prompt specificity and 
code efficiency, investigate other prompting strategies, and assess their 
applicability across a broader range of programming challenges. Developing best 
practices for prompt design could also enhance the utility of LLMs like ChatGPT 
in various programming contexts. By shedding light on the effectiveness of 
different prompting strategies, this study provides a foundation for optimizing the 
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use of ChatGPT and similar LLMs in programming assistance, contributing to 
more efficient and accurate software development processes. 
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