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Abstract 

 
In the evolving landscape of Software-Defined Networking (SDN), the strategic 
placement of controllers poses a critical challenge that necessitate a precise balance 
between network performance and security. This paper presents an integrated framework 
for enhancing security and performance in SDN by combining controller placement and 
intrusion detection systems (IDS). Unlike existing solutions which were implemented 
disjointedly, we propose a holistic approach that leverages the proximity of controllers to 
network traffic for real-time threat detection, rapid response, and mitigation of security 
attacks. We employ an advanced clustering model for optimal controller placement, 
reducing costs and latency while ensuring reliability and balanced loads. In addition, we 
utilize k-nearest neighbour (KNN) for efficient anomaly detection in our IDS for 
improved network security. Experimental results confirm the framework’s effectiveness in 
strengthening SDN security and resilience. The enhanced-DBSCAN-based CPP model 
significantly minimized the cost, and latency, and ensured continuous operation in dynamic 
SDN environments while the KNN-based IDS shows effectiveness in improving threat 
detection capabilities, achieving high detection accuracy of 100% on the LAN dataset, 
outperforming other machine learning models such as Random Forest and Naïve Bayes. 
The indication is that strategic controller deployment, in conjunction with IDS, can 
significantly bolster threat detection, response times, and the overall security stance of the 
SDN environment. 
 
Keywords: SDN, Controller placement, Intrusion detection, Security attacks, Latency, 
Load balancling, Reliability. 

 
1. INTRODUCTION 
 
The traditional network architecture has become obsolete and inadequate for the 
current network needs due to its complexity and inherent rigidity in network 
management and configuration [1, 2]. The rapid development of information 
technology, such as IoT, cloud computing, big data applications, and so on,  has 
increased the demand for online services that require low latency, high security, 
and minimal packet loss, leading to the development of a new network architecture 
called software-defined networking (SDN) [3]. SDN emerged as a revolutionary 
approach to network management and control as it overcomes the drawbacks of 
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traditional networks by decoupling the control plane from the data plane. This 
allows for centralized control and programmability of network devices, paving the 
way for direct programmability and simplification of the network design, 
monitoring, and management [4]. The paradigm shift empowers network 
administrators to effectively manage and allocate network resources which in turn, 
enhances network performance and flexibility [5]. SDN introduction rids out the 
need for complex and manual configurations on individual network devices, as 
network intelligence is delegated to the software-based controllers. The gathering 
of network intelligence streamlines network management and unlocks the avenues 
for networking innovation and evolution to support emerging technologies such 
as IoT, cloud computing, etc. [6, 7]. SDN also introduces new possibilities for 
network security, as the control plane can make dynamic decisions to detect, 
mitigate, and prevent network attacks.   
 
SDN is considered a transformative technology that promises to simplify network 
management, enable innovation, and enhance network security. However, SDNs 
face challenges such as the controller placement problem (CPP) and security 
attacks emanating from denial of service (DoS), distributed DoS (DDoS), [8-10], 
and so on. For the CPP challenge, the SDN control plane can be either centralized 
with a single controller that oversees multiple data plane devices or distributed 
with multiple controllers that coordinate with each other [6]. These choices have 
a huge cost on SDN’s reliability, scalability, processing capacity, and security [11]. 
For instance, centralized control has the drawbacks of a single point of failure, 
limited processing power, and unsuitability for large-scale networks, while 
distributed controllers have the advantages of availability, efficiency, scalability, 
and load balancing, but are confronted with complexity and coordination [12]. 
Therefore, CPP emanated as the problem of determining the optimal number and 
location of controllers in a distributed SDN architecture, to achieve the desired 
performance metrics such as latency, reliability, load balancing, energy efficiency 
and cost [13-15]. Hence a good controller placement is critical to achieving good 
quality of service (QoS) and meeting the essential network requirements.  
Furthermore, security is a critical challenge that affects or hinders mass adoption 
of SDN. SDN is faced with various security vulnerabilities such as controller 
vulnerabilities, DoS/DDoS attacks, data privacy concerns, flow table 
manipulation, insecure southbound communication, inadequate authentication, 
and authorization [9] and so on. These threats are so severe in hybrid and 
distributed SDN and require proactive action to address them. For instance, the 
SDN relies heavily on centralized controllers for network intelligence, and any 
vulnerabilities in these controllers could expose the entire network to potential 
attacks or failure, with the centralized control, there's a risk of unauthorized access 
to sensitive data, such as network configurations and traffic patterns, which could 
compromise privacy and it is susceptible to DoS/DDoS attacks targeting the 
control plane, disrupting network functionality by overwhelming the controller 
with excessive traffic [16]. 
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To address these challenges, a comprehensive approach involving robust and 
efficient controller placement strategy to enhance SDN’s performance, scalability, 
reliability, and security, as well as intrusion detection systems (IDS), ongoing 
monitoring and updates to mitigate emerging threats in the evolving landscape of 
SDN security have been developed and deployed. Particularly,  there are various 
methods and algorithms to solve the CPP, such as integer linear programming 
(ILP), bio-inspired, heuristic algorithms, and machine learning (ML) techniques 
[17, 18]. However, an efficient CPP strategy is yet to be achieved. Moreover, over 
the years several IDS methods have been developed [19-21] to address the security 
susceptibility of the SDN to threats and attacks. IDS is an essential SDN security 
component used to monitor network traffic and identify anomalous or suspicious 
patterns and behaviours [22]. Several types of IDS exist for SDN including 
signature-based, anomaly-based [19, 23, 24], and hybrid IDS and intrusion 
prevention systems, which use various techniques, such as ML, deep learning 
(DL), and even blockchain coupled with effective feature engineering techniques 
to enhance the accuracy and efficiency of intrusion detection. However, existing 
solutions to address CPP and IDS in the realm of SDN are disjointed, as both 
approaches are implemented separately. Previous studies have shown that SDN-
based CPP solutions cannot be achieved independently, as they are influenced by 
other factors such as security issues, controller load balancing issues, and others 
[10].  
 
Therefore, this paper presents and implements an integrated framework for 
solving the CPP goals and attack-aware strategy in an SDN-enabled wide area 
network (WAN) environment. This is to provide a comprehensive solution to 
SDN challenges involving performance, reliability, scalability, and security. The 
framework utilizes the enhanced DBSCAN method to optimize the processing 
latency, load balancing, reliability, and optimal number of controllers needed while 
the attack-aware strategy uses the KNN to design an IDS. The main contribution 
of this study is summarized as follows: 

1. Highlights the performance and security challenges faced in SDN-enable 
WAN environments. 

2. Proposed an integrated framework that leverages the proximity of 
controllers to improve SDN security and dependability. The integrated 
framework has both CPP and IDS modules. While the CPP module 
ensures optimum controllers’ location and allocation, the IDS detects 
network intrusions and anomalous behaviours in real time. 

3. We designed and discussed the components of the proposed framework. 
The aim is to minimize cost, and latency and maximize reliability and load 
balancing. 

4. We performed simulation experiments and utilized sets of performance 
measures to evaluate the effectiveness of the proposed framework. We 
showed promising results in minimizing cost and maximizing security. 
 



Journal of Information Systems and Informatics 
Vol. 6, No. 1, March 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Rodney Sebopelo1, Bassey Isong | 467 

The remaining parts of this paper are organized as follows: Section 2 presents the 
related works, Section 3 presents a literature review on CPP and IDS, and Section 
4 presents and discusses the proposed integrated framework. Additionally, Section 
5 presents the evaluation and discussion while Section 6 presents the paper's 
conclusion. 
 
2. RELATED WORKS 
 
This section presents some of the important concepts and related works in terms 
of existing CPP and IDS approaches in the SDN. We summarize them as follows. 
 
2.1 Controller placement problem 
 
The placement of SDN controllers is a crucial architectural decision that can 
significantly impact the performance, scalability, and security of the network [25]. 
The CPP has been considered a challenging optimization problem designed to 
find the optimal number and location of controllers in the network environment 
[26]. To achieve the optimal number of controllers to effectively manage the 
network, factors such as network size, complexity and desired performance 
metrics are essential while controller location within a given network topology 
ensures the minimization and maximization of the network objectives but can be 
constrained by bandwidth limitations, physical infrastructure, security 
considerations, and so on. Thus, this problem is NP-hard in nature, as there is no 
efficient algorithm to find the optimal solution in polynomial time. In the SDN, 
CPP is generally formulated by modelling the networks with multiple nodes and 
link as an undirected graph, G <S, L, C> to represent the network topology, where 
S represents the set of switches, L the set of physical links between nodes, where 
the position of the node is the position of controllers or switches, and C represents 

the set of controllers. Moreover, n = S∪C represents the number of network 
nodes while k is the number of controllers. Previous studies on SDN mainly focus 
on finding the optimal value of optimal S-C assignment. Consequently, the 
predefined objective function is optimized with either a single objective or 
multiple objectives, such as latency, load balancing, link failure, cost, etc.  
 
In the realm of SDN CPP, a variety of strategies have been developed to achieve 
optimal placement outcomes. These strategies include heuristic and metaheuristic 
methods, Integer Linear Programming (ILP), bio-inspired algorithms, and ML-
based techniques [19, 27, 28]. The primary objectives of these approaches are to 
optimize key performance metrics such as latency, reliability, cost, and load 
balancing [29, 30]. While some methods focus on optimizing a single metric [31, 
32], others aim to address multiple metrics simultaneously [33], leading to a 
spectrum of Pareto-optimal solutions, where improving one metric may 
compromise another. Minimizing latency is crucial for reducing communication 
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delays within the network, and it is categorized into average latency for S-C, worst-
case S-C latency, and average C-C latency, which includes processing time [34, 35]. 
Cost minimization is achieved by deploying fewer controllers, thereby enhancing 
the economic efficiency and feasibility of the network through reduced capital and 
operational expenditures, as well as lower energy consumption [36]. Maximizing 
reliability is essential to maintain network functionality in case of controller 
failures, affecting both network availability and fault tolerance [37]. Strategies to 
enhance reliability include deploying multiple controllers, establishing multiple 
control paths, and minimizing control path lengths [22]. Load balancing across 
controllers is also vital to prevent overloading, which influences the network’s 
scalability, QoS, and robustness [38]. Controller placement is further influenced 
by traffic patterns and security considerations [39]. Analyzing network traffic 
patterns helps identify critical points for controller placement to manage traffic 
effectively. Secure placement of controllers is imperative to mitigate risks such as 
unauthorized access or control plane attacks. 
 
In recent studies, innovative techniques have been proposed to optimize SDN 
CPP. Jiang et al. [40] developed a predictive SDN configuration model using 
neural networks and boosting regression, which proved superior to deep learning 
models in experimental evaluations. Singh et al. [41] focused on minimizing 
network latency and enhancing reliability, even with the failure of multiple 
controllers, by designing a capacitated controller arrangement. Their findings 
showed that a setup with three controllers could maintain excellent performance 
despite controller failures. Further, Singh et al. [42] presented a mathematical 
model for CPP and RCPP, aiming to reduce average latency while considering 
controller capacity and load as constraints. They compared their varna-based 
optimization method with established heuristic algorithms like PSO, Jaya, and 
WOA. Ramya et al. [43] also proposed an ML-based approach to manage network 
traffic by predicting the optimal number of controllers needed, utilizing the k-
medoid algorithm for placement, thereby advancing network automation by 
integrating SDN and ML technologies. 
 
Benoudifa et al. [44] introduced an intelligent system that employs self-
competition, combining tree search with a learned model, to train for optimal 
game placement in network topologies, focusing on metrics like latency and load 
balancing. Their experimental benchmarks validated the system’s effectiveness. 
Similarly, Almakdi et al. [45] developed a novel load-balancing method using 
hierarchical agglomeration clustering and backpropagation neural networks, 
segmenting network services into groups based on normalized data requirements 
and evaluating based on network delay, packet loss, and latency. Joshua et al. [46] 
also applied a clustering technique for optimal controller placement, assessed using 
the Mininet emulator and silhouette scores to determine the ideal number of 
controllers for various topologies. In a similar effort, Chen et al. [47] proposed a 
density-based controller placement algorithm (DCPA) for joint latency 
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optimization, which segments the network into subnetworks and strategically 
places controllers to minimize average and worst-case latencies. Tested on eight 
real network topologies, DCPA demonstrated optimal performance with low time 
consumption. Moreover, Abeer et al. [48] presented a dynamic mapping based 
CPP technique for distributed architectures, enhancing system reliability and 
availability. They combined a heuristic CPP algorithm with metaheuristic particle 
swarm optimization (PSO) for a hybrid approach that balances reliability and cost-
effectiveness. Concurrently, Hui Xu et al. [49] suggested a multi-controller 
placement strategy using an improved Harris Hawks algorithm, considering local 
controller load limits, and employing a Sin chaotic map for CPP initialization. 
Their approach considers total latency, node reliability, link failure rates, and 
placement costs. 
 
2.2 SDN Security and Intrusion Detection 
 
SDN as a revolutionary network architecture that promotes programmability, 
flexibility and scalability of network resources is faced with several security 
challenges and vulnerabilities, both from internal and external threats [3]. These 
threats target the different layers of SDN architecture. Some of these threats 
include controller vulnerabilities to attacks such as hijacking, flooding, poisoning, 
and compromising, etc., designed to take over the network, overload the controller 
with fake requests, inject malicious rules or commands, or compromise the 
controller’s integrity or availability [50, 51]. The data plane is also susceptible to 
attacks such as spoofing, tampering, DoS/DDoS, man-in-the-middle, etc. 
designed to interrupt the network’s normal operations, modify, or steal sensitive 
network/user data, or impersonate legitimate devices or users, etc. [52]. Moreover, 
the application layer is confronted by attacks such as malicious codes, 
unauthorized access, data leakage, etc. which aim to illegally access network 
resources, execute malicious code on the controller or the devices, and even 
expose sensitive data to unauthorized parties, etc. [53]. Others include the lack of 
standardized security protocols and practices in different SDN implementations 
resulting in inconsistencies and breaches in security measures, etc. [54]. Therefore, 
tackling these challenges in the evolving realm of SDN requires a comprehensive 
approach that involves robust mechanisms, protocols, tools such as IDSs, and 
continuing monitoring and updates to mitigate developing threats. 
 
SDN, despite its transformative impact on network resource management through 
enhanced programmability, flexibility, and scalability, encounters numerous 
security challenges. These challenges stem from both internal and external threats 
that exploit vulnerabilities across the SDN’s various layers [3]. At the controller 
level, threats such as hijacking, flooding, poisoning, and compromising attacks aim 
to seize control of the network, inundate the controller with spurious requests, 
insert malevolent rules, or undermine the controller’s integrity and availability [50, 
51]. The data plane is not immune, facing threats like spoofing, tampering, DoS, 
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and man-in-the-middle attacks, which disrupt normal network operations, alter or 
pilfer sensitive data, or masquerade as legitimate entities [52]. The application layer 
is also a target, with risks including malicious code execution, unauthorized access, 
and data breaches, all of which threaten to illicitly exploit network resources, 
compromise devices, and leak sensitive information [53]. Compounding these 
issues is the absence of uniform security protocols across different SDN 
implementations, leading to security inconsistencies and vulnerabilities [54]. 
Addressing these multifaceted security concerns necessitates a holistic strategy that 
incorporates strong security mechanisms, protocols, and tools like IDS, alongside 
continuous monitoring, and updates to counteract emerging threats. IDSs have 
been increasingly incorporated into SDN to bolster network security. These 
systems enable real-time traffic monitoring and analysis, facilitating centralized 
control, dynamic policy updates, resource optimization, and adaptive security 
measures [55, 56]. IDS in SDN employ two primary detection methods: signature-
based and anomaly-based [57, 58]. Signature-based IDS compares network 
activities against a database of known attack patterns to identify intrusions [59], 
but they are ineffective against novel threats. In contrast, anomaly-based IDS 
detect irregularities by comparing traffic against a baseline of normal activity, 
offering protection against both known and novel attacks, albeit with a higher risk 
of false positives [60, 61]. Anomaly detection often utilizes ML techniques, 
including supervised, unsupervised, reinforcement, and DL to efficiently detect 
network anomalies [62-66]. ML-based IDS within SDN are designed with modular 
components that enhance attack detection, including traffic data collection, 
anomaly identification, mitigation, and reporting functions [67]. 
 
In the field of SDN-based IDS, Logeswari et al. [68] introduced the HFS-LGBM 
IDS, utilizing a two-phase HFS algorithm for optimal feature selection and Light 
Gradient Boosting Machine (LightGBM) for attack detection. Alzahrani et al. [69] 
generated datasets with the Ryu controller and Mininet, training various ML 
algorithms like AdaBoost and DT, with DT achieving a 0.99% F1 score. Shaji et 
al. [70] developed an intelligent IDS for SDN, utilizing two ensemble ML models 
to classify DDoS attacks. Their multi-class RF-LR model demonstrated high 
performance with 99.45% precision and 99.46% sensitivity, outperforming the 
SVC-RC model. In a similar vein, Seneha et al. [71] introduced the Real-time 
Anomaly Detection System (RADS), which capitalizes on SDN’s capabilities and 
uses a dynamic threshold for real-time anomaly detection through ML techniques 
like ARIMA. The system alerts users to malicious activities within 150 
milliseconds, using Mininet for SDN topology, Elasticsearch for data storage, and 
ARIMA, LR, and Prophet models for anomaly detection. Dubem et al. [72] 
investigated the application of Generative Adversarial Networks (GANs) for 
anomaly detection in SDN, utilizing the GENI testbed. The study proposed a 
comprehensive controller-based framework to address common network attacks, 
demonstrating GANs’ potential to identify diverse anomalies. Equally, Yousif et 
al. [73] combined Ryu, Mininet, and a 1D-CNN to detect and counter DDoS 
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attacks, achieving a 99.99% detection accuracy rate, outperforming other ML 
models like LR, RF, SVM, and KNN. Likewise, Mohamed et al. [74] introduced 
ML-based network intrusion recovery strategy, a novel technique for intrusion 
recovery in SDN that leverages traffic pattern analysis for strategic backup path 
selection, significantly reducing recovery time by up to 90% compared to 
traditional methods. 
 
The studies mentioned represent significant advancements in CPP and IDS within 
the SDN framework. Although these methods effectively enhance network 
efficiency, performance, scalability, and security, they are typically deployed in 
isolation. This separation is a notable issue, and this paper aims to bridge this gap 
by proposing an integrated framework that concurrently addresses SDN’s CPP 
and security, offering a unified and robust solution. 
 

3. METHODS 
 

This section presents the proposed integrated framework that combines controller 
placement with intrusion detection in the SDN environment. The development 
methodology includes theoretical modelling, algorithm creation, and simulation 
experiments. Initially, a thorough literature review was performed in Section 2, 
provided insights into current techniques, challenges, and trends in SDN, CPP and 
IDS. Subsequently, mathematical models were constructed to depict the network, 
controllers, and IDS, considering factors such as network topology, network 
traffic, security requirements, and performance metrics. The objective is to 
ascertain optimal locations for controllers and IDS. To resolve the CPP-IDS 
integration, ML algorithms were developed, employing clustering for controller 
placement and supervised learning for detecting network anomalies. These 
algorithms are intended to enhance SDN performance metrics, including latency, 
reliability, controller workload, and security response times. Furthermore, the 
framework was tested in a simulated SDN environment using Mininet to evaluate 
its performance and effectiveness under various network conditions and attack 
scenarios. This involved generating network traffic, injecting security attacks, and 
measuring performance in terms of controller location and allocation, latency, 
detection accuracy, etc. The framework’s structure and its components are 
depicted in Figure 1 and discussed therein. 
 
As shown in Figure 1, the integrated framework in the SDN environment has the 
following components: the CPP module, SDN infrastructure and the IDS. 

a) CPP module: The CPP module focuses on determining the optimal 
placement of SDN controllers within the network topology to improve 
the performance and efficiency of the network. We utilized the enhanced 
DBSCAN method as the CPP solver for optimum placements. The goal 
is to minimize both cost and latency as well as balance controllers’ load 
and maximize reliability. 
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Figure 1. Integrated CPP-IDS architecture 
 

b) SDN Infrastructure: This represents the SDN network infrastructure, 
consisting of SDN controllers and switches.  The SDN controllers take 
charge of managing the network and communicating with switches using 
the OpenFlow protocol. They execute control logic and make forwarding 
decisions or behaviours of the switches. In addition, the network switches 
are responsible for forwarding traffic based on instructions received from 
the controller. 

c) IDS module: This module is responsible for detecting intrusions and 
anomalous behaviours within the network traffic. It analyses incoming 
traffic data to the network to identify potential security threats such as 
DoS/DDoS, etc. It implements algorithms and techniques/policies for 
detecting intrusions and security attacks in real time by continuous 
monitoring of network traffic and data collection from switches. We 
utilized the KNN algorithm to implement the detection algorithm. 

All these components in the framework contribute to optimizing controller 
placement alongside robust intrusion detection capabilities. 
 
3.1 Controller placement formulation 
 
In the context of SDN, the placement of controllers is a critical architectural 
decision that significantly impacts network performance, scalability, and security. 
This section introduces an integrated framework designed to address the 
challenges of CPP and security within SDN. The framework employs multiple 
distributed controllers across a WAN to ensure network availability, minimize 
delays, and manage controller processing loads effectively. It also emphasizes the 
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strategic placement of controllers in secure locations to reduce the risk of 
unauthorized access and control plane attacks, thereby maintaining high QoS and 
user experience. The CPP strategy aims to optimize controller and switch 
assignments, reduce C-C and S-C latencies, enhance load balancing across 
controllers, and bolster network reliability to prevent single points of failure. The 
main goal of the network is articulated and defined to align with these objectives. 
 

CPP = min ∑ (C+ L
n

k=1
)+ max ∑ (C

LBD
+R+ S)

n

k=1
 (1) 

 
Where: 

a) Cost: Cost (C) involves the number of controllers to be deployed and the 
number of switches assigned. The number of controllers is denoted by 

Nctr  and is achieved via training the collected traffic data to predict the 
optimal number and location of the controller in the network. It also 
involved the number of cluster subdomains required in the SDN network.  

 

Nctr=min ∑ L(Ck)
n

k = 1
                      (2) 

 

b) L(Ck) denotes the optimal number (k) and location of the controller in 
the network, and n = 1,..., N is the number of the placed controllers in 
the network. Moreover, the number of switch assignments denoted by 

𝑁𝐶𝑡𝑟 → 𝑆𝑤  represent the number of data nodes assigned to a specific 
controller in the network and belong to the members of the specific 
subdomain network. We maximized the subdomain cluster network from 
the location of the controller network range for traffic communication 
and minimized the least members of the core data nodes (β). 
 

NCtr → Sw= max ∑ d(v, z')
k

v∈V
                                                (3) 

 

In Eq.(3), 𝑑(𝑣, 𝑧′) is the maximized range of subdomain network 
communication from the placed controller to the subdomain cluster 

members. The least core data nodes are contained within the 𝑑(𝑣, 𝑧′) of 
the subdomain cluster network without overfitting. 

c) Latency: In SDN, the latency can be analyzed from different approaches: 
(1) processing latency is the time both at the controller side (processing 
requests and generating instructions) and at the switch side (processing 
and applying instructions). These are measured by S-C – average and S-C 
– worst and the S-C latency. (2)  C-C latency is the communication latency 
between different SDN controllers in the distributed architecture. We 
aimed to minimize both S-C and C-C latencies. 
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d) Load balancing (CLBD): This is achieved based on mathematical analysis and 
comparison of the controllers’ load with its capacity. Once the load on 

the controller exceeds its capacity i.e.,  𝐶𝐿𝐵𝐷 >  𝜑(𝑦), the load is shared 
among other available and active controllers in the network.  
 

CCapacity = 
Collected traffic statistics  φ(x) 

Oveall placed controller (φ(z''))
 = φ(y)    (4) 

 

Eq.(4) computes the controllers’ capacity 𝜑(𝑦), 𝜑(𝑥) is the collected 

traffic data and 𝜑(z′′) denoted the overall number of placed controllers 
in the network. 

CLBD = 
β(x)× d(v,z') 

Collected traffic statistics  φ(x) 
                        (5) 

 
Eq.(5) formulates the threshold load on the controller based on the 

number of the received traffic data,  𝛽(𝑥) denoted the least core data 

nodes contained by the 𝑑(𝑣, 𝑧′). Thus, the threshold is exceeded, and the 
load is balanced using Eq.(2). 

e) Reliability (R): We computed the C-C and S-C time processing using the 
multi-path alignment method. This is to forward the load on the failed 
controller to another active or available controller. This is achieved by 
minimizing the time required by the controller to control the forwarding 
load, the time required to forward the load between the controllers should 
not exceed the required time in the network. 

 

MCP Ctr[1]→Ctr[2]  =  MCP Ctr[2]→Ctr[3]  = θ   (6) 

 
f) Security: Security (S) in eq. 1 represents security which is one of the core 

objectives to maximize in this work. We aim to maximize SDN security 
by placing controllers strategically to minimize control traffic overhead 
and within a secure place to mitigate security risks associated with attacks 
such as DoS/DDoS. This is achieved by the integration of a robust ML-
based IDS in the SDN environment. 

 
3.2 Optimum controller placement algorithm 
 
This subsection presents the proposed CPP algorithm that directly impacts the 
SDN network's performance, scalability, and resilience in terms of maximum 
security, load balancing, reliability and minimum cost and latency. that is, the 
placement algorithm satisfies the number of the required controllers, switch 
assignments, processing latency, C-C and S-C, controller processing latency or 
load balancing, and reliability. We utilized the enhanced DBSCAN algorithm [75, 
76], motivated by some benchmarked performance from the widely known 
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clustering algorithms [77, 78]. Moreover, we decoded the collected LAN traffic 

statistics (v1, v2, v3 … . . vk) ∈ V using Wireshark software.  The proposed 
optimum placement algorithm is captured in Figure 1.  
 

Figure 2. Controller placement algorithm 
 
As shown in Figure 2 derived the model technique for the number of the required 
controllers, switch assignment, load balancing, and reliability. We first find the 
shortest path between each pair of the nodes calculate the required distance, and 
find the controller location that minimizes the processing latency, the required 
number of the controller was formulated using equation 2. Moreover, we derived 
the processing latency an (i) and b(i) using steps 2 and 3 for the time required to 
process the packet in the network. We further derived the controller-to-switch 
assignment which is the assigned path from one controller to the switch that 
minimizes the processing latency using equations 4 and 5. That is capacity and load 
on the controller formulated using steps 6 and 7, where B(x) is the collected traffic 

statistics, 𝑑(𝑣, 𝑧′) derived the distance path of the controller to switch, and 

(𝜑(z′′)) is the derived optimally placed controllers. Furthermore, we derived the 
multi-path alignment paths using the computation of equation 6, that is the time 
required to forward the load between the controllers was compared to the 
availability of the active and placed controllers. Once the approach is performed, 
we derived the intrusion detection on the nodes and was derived using algorithm 
2 in Figure 3. 
 
 

Algorithm 1: Algorithm for achieving the controller placement 

Input: Topology network nodes (v ∈ V)          

Output:  (𝑁𝑐𝑡𝑟, 𝑁𝐶𝑡𝑟 → 𝑆𝑤, 𝐶𝐿𝐵𝐷 network topology) 
1. Read the topology nodes and find the shortest path 

2. Compute the 𝑁𝑐𝑡𝑟, 𝑁𝐶𝑡𝑟 → 𝑆𝑤, 𝐶𝐿𝐵𝐷 and adjacent nodes 
3. Verify the node belonging to the subdomain network 
4. Compute the (d (x’s, y) == k) on the network nodes 

5. For all of  v ∈ V 
6.        node number = 1 
7.  else node number = 0 
8. If node number = 0 
9.        Store and calculate the distance of the node = 0 
10. Obtain the adjacent topology belonging to the node number = 0 
11. Assign each node to the closest cluster centroid 

12. Search for 𝑁𝑐𝑡𝑟, 𝑁𝐶𝑡𝑟 → 𝑆𝑤, 𝐶𝐿𝐵𝐷 new solution  
13. Repeat statement (5)(6)(7) 

            14.    End 
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3.3 Intrusion detection  
 
This section presents the design of the proposed IDS model for ensuring 
maximum security in the SDN environment. The proposed detection architecture 
is anomaly-based flow detection, automatic and modular, leveraged by SDN’s 
architectural functionalities such as the OpenFlow and ML technique. It 
automates network monitoring in real-time and the detection of anomalous traffic 
flows or malicious behaviours by alerting the administrators and invoking 
mitigative actions to thwart the attack in the network. The proposed IDS model 
in this work provided a positive effect and increased security measurement in the 
SDN environment [22]. Though several IDS and security countermeasures have 
been proposed and developed for the SDN, many of these systems are less 
efficient, have low precision, are not effective in real-time operation and exert so 
much burden on the controller in terms of network monitoring, flow table 
information updating, anomalous flow detecting, etc. To address this challenge, 
our proposed model was based on the application plane during anomaly detection. 
The IDS model shown in Figure 1 has several interrelated components that 
contribute to the detection of anomaly flow attacks in the SDN. This includes 
modules for the collection of traffic statistics, anomaly detection, mitigation, and 
reporting.  
 

3.3.1 Traffic collection module 
 

In this module, we showed how the traffic was read in the form of (v1, 

v2, v3 … . . vk) ∈ V where V is the overall collected traffic statistics sent and 

received during the traffic operation. Moreover, vk is the ith traffic flow selected 
features extracted as shown in Table 1.  
 

Table 1. Extracted features from the collected Vi 
Extracted feature Description 

Deviceid The device used for the transmission of the traffic flow 

Bytes The bytes associated with the transmitted flow data 
Packets The size associated with the transmitted data 
Duration The time associated with the delivered data 
Priority The priority of the data in the network 
TableId The identity of the table associated with the delivered data 
Payload The payload associated with the data flow 

 
3.3.2 Anomaly detection module 
 
This module deals involves traffic classification for the detection of anomalous 
flow. It utilizes the KNN algorithm, an ML technique to identify anomalous 
events in the network by performing deep packet inspection and analysis on 
collected traffic flow. Detailed information about the injected anomalous flow is 
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shown in Table 2. Metrics were used to evaluate and correlate classified traffic, 
and the identified attacks were sent to the anomaly mitigation module. 

 
Table 2. Anomaly attack packet details 

 
Moreover, the model categorized the detection into normal and anomalous flows. 
As shown in Table 3, “+/0” denotes the normal traffic, while “-/1“is abnormal in 
the network. This traffic classification was enabled by adopting the described 
function and generating descriptive statistics. The employed data were split into 
training and testing, that is 80% for the training and 20% for testing. This is 
because the higher the classification accuracy signified the dispersed probability 
distribution, while the lower denoted the concentration of the data distribution.  
 

Table 3. Normal and anomaly effects on the traffic feature 

 
Furthermore, the trained traffic features were subsequently fed to the anomaly 
detection module, an efficient anomalous flow detection which uses the KNN 
algorithm. KNN is a supervised ML algorithm used for classification tasks, where 
it can assign labels to unlabeled data points based on the labels of neighbouring 
data points in the training dataset [79, 80]. In this study, we trained and correlated 
the dataset identifying anomalous events and forwarded the detection report to 
the mitigation module. For anomalous event detection, the Euclidean distance is 
applied. We computed and defined the threshold value that determined the 
anomaly flow attack, and defined the rules to trigger the alert when the traffic 
exceeds a certain threshold. That is the flow rules above the threshold are 
considered as the potential attack. Once identified as a potential attack, the 
controller acts and reports the malicious data. The KNN-based anomaly detection 
algorithm is shown in Figure 3    
 

Information Description 

ping Used to send the ICMP echo request packets to the target host 
or the IP address. 

-c Number of the sent data packets in the network 
-s The sent packet size in the network 

Target IP address The information about the target communication address 
Time Round trip time about the packet details 

Packet loss Information about the transmitted packet 

Type 
                                         Affected feature traffic pattern 

Bytes Packets Duration Priority/ Table id 

Normal +/1 +/1 +/1 +/0 
Anomaly -/0 -/0 +/1 -/1 
Anomaly +/1 +/1 -/0 +/1 
Anomaly -/0 -/0 +/1 -/1 
Anomaly -/0 -/0 -/0 -/1 
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As shown in Figure 3, we derived our intrusion detection model technique, 

Finding k the number of the network nodes belonging to the topology v ∈ V, we 
computed the square of the distance of the adjacent nodes belonging to the 
topology output, we calculated the threshold of the topological network nodes and 
search for all the network nodes belonging to the anomalous nodes, we obtained 
the network nodes belonging to the number = 1, that is the DDoS potential attack, 
we removed the network node = 1 from the overall topological network, we 
performed the statement 3 and 4 based on the threshold segregating the network 
topological network nodes, then, we searched for the adjacent network nodes 
number = 0 and allocated the nodes to the network subdomain, we repeated the 
statement (2)(3) and (7) on the adjacent and new network nodes. 

Figure 3. Intrusion detection algorithm 
 
3.3.3 Mitigation module 
 
This presents the applied mitigation actions on the traffic flow associated with 
anomalous flow detection. The policies include DropFlowData - dropping of the 
traffic flow data, ExcludeFlowData - exclusion of the flow data, DropEntryFlow- 
dropping of entry flow, and PushControllerLoad - pushing of the controller’s load 
to the neighbouring controllers. With these actions, DropFlowData ignores and 
deletes any flow associated with the anomalous traffic flow in the SDN while 
DropEntryFlow blocks the entry flow communication from the specific host to 
the specific services in the destination IP address. Moreover, the 
ExcludeFlowData ignores the entry flow after distributed IDS make an alert about 
the anomaly attack in the network, and PushControllerLoad pushes the load on 
the attacked controller to the neighbouring or new controller. To ensure the above 
actions are enforced correctly, Table 4 summarizes the function policies 
implemented in Figure 4 on the SDN environment to mitigate detected anomalous 
flow in the SDN. Figure 4 presents the algorithm that implements the formulated 

Algorithm 2: Distributed intrusion detection algorithm 

Input: Topology network nodes (v ∈ V)          

Output:  v ∈ V based attack topology nodes 

           1. Compute k belongs to the network nodes 
           2.  Calculate the square distance d (x’s, y) of the adjacent nodes 
           3.  Calculate the threshold of the adjacent nodes 
           4.  Obtain the adjacent network node number = 1 
           5.  Remove the node = 1 out of the topology network 
           6.  Repeat statement (3)(4) on the network nodes = 1 
           6.  Search k for all the network adjacent nodes = 0  
           7.  Allocate the node number = 0 to the adjacent cluster network subdomain 
           8.  Repeat statement (2)(3)(7) for all the new network nodes = 0 
           9.   End 
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function policy used to manage the effective detection and necessary mitigation 
actions taken in the SDN network. 
 

Table 4. Implemented function policy 
Criteria Match criteria Action 

DropFlowData 

Utilized controller and 
defined the flow table in 
switches, the rule dictates 
how the network traffic is 
processed. 

Drop the flow rule/s associated with 
the identified DDoS attack. 
controller > drop the source IP flow rule 
associated with the ID anomaly attack. 

ExcludeFlowData 

Set the matching packet 
rule and identify any 
related packets associated 
with the attack attributes. 

Exclude the identified flow rule 
associated with the DDoS flow rule 
required to duplicate the traffic flow 
rule. 
controller > exclude the id flow rule 
required to mimic the source and 
destination IP address. 

DropEntryFlow 

Dictate any flow rule 
matching the IP address 
associated with the 
anomaly attack in the 
network. 

Drop the source IP address flow 
matching the entry flow data packet 
related to the anomaly attack. 
controller > drop the source IP address 
related to the ID anomaly attack  

PushControllerLoad 
 

Evaluate controller failure 
rate and how flow rules 
are forwarded from the 
source to the destination. 

Push the load of the affected 
controller to the target controller.  

 

 

Figure 4. Policy enforcement algorithm 

Algorithm 3: Enforced function policy algorithm 

Input: Receive the x’s – traffic attribute flow stats 
Output: drop / exclude/push flow data 
           1.  Receive the input traffic flow stats x’s 
           2.   Characterised x’s → y - payload 
           3.   Knn fits y → x’s – flow rules 
           4.   if  (x’s, y) → d (x’s, y)  == k    
           5.        forward k →  anomalous storage event (A) 
           6.    while (d (x’s, y) !=k 
           7.            forward  d (x’s, y) → N  - x’s → normal  

           8.    if (d (external’k, y) ==k) ∈ e’k → (external input attack) 
           9.           drop entry d (e’k, y) == k  
         10.                forward e’k → anomalous storage event (e’k) 

         11.    else if (d(internal’k, y) ==k) ∈ inter’k → (internal input attack) 
         12.        drop flow d(internal’k, y) == k 
         13.            forward internal’k → anomalous storage events (A) 
         14.   End 
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3.3.4 Reporting module 

Once the anomaly attack is mitigated, a report is generated of the anomalous 
events, recorded, and stored. The stored events are used to predict any identical 
anomalous event that wants to invade the resources of the network. Also, any new 
identical anomaly flow and services associated with the recorded anomalous event 
are prioritized and mitigation action policy is prioritized before causing any harm 
to the network or its resources. 

 
4. RESULTS AND DISCUSSION 

This section presents the evaluation of the proposed system that integrates CPP 
and IDS to demonstrate its performance and effectiveness in terms of minimum 
delay and cost, maximum security, load balancing and fault tolerance in the SDN 
network. The evaluation was achieved based on simulations, and the results 
obtained were presented and analyzed. 
 
4.1 Experimental simulation setup 

To evaluate the proposed system, implementations were performed on the SDN-
enabled environment. The simulations were run on a PC with the Ubuntu 20.04 
LTS OS on the VM, a core ™ i7-10610U CPU processor and 16 GB RAM. We 
designed a network topology consisting of connected switches with multiple host 
devices, and controllers. We employed the address, with the subnet mask, default 
gateways, DNS server, and link-local address. The designed network topology is 
built to simulate the SDN WAN-enabled network that will be using the controllers 
to monitor the traffic communication, and OpenFlow switches to simulate the 
SDN virtual environment. We simulated the traffic flow in real time and identified 
the DDoS attack in the SDN environment. The results were collected based on 
the run-time simulation process of the traffic nodes' communication. The 
simulation parameters used are shown in Table 5 and evaluation metrics. 

Table 5. Simulation parameters 

Simulation Parameter(s) Values 

Simulation area - 𝑆𝐴 SDN enabled environment 

Simulators - 𝑆𝑇 Mininet, ONOS web UI, VM, python 

Number of nodes 𝑁𝐴 20 

Number of the switches and controllers 

- 𝑆𝐶  

6, 3 

Controllers - 𝐶𝑁 ONOS 

SDN domain - 𝑆𝐷 5 

Simulation time - 𝑆𝑇 300s 

Traffic type - 𝑇𝑇  UDP and TCP 

Size of flow table size - 𝑆𝑇 120 entries 
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The evaluation metrics used are the accuracy, precision, and F1-score [70], [73] 
which are all based on the confusion matrix where TP is the true positive, TN the 
true negative, FP the false positive and FN the false negative in the classification. 
Accuracy computes the ratio of the number of correctly classified instances 
(attacks and non-attacks) to the total number of instances. Recall measures the 
proportion of attacks correctly identified. This represents the system's ability to 
detect attacks effectively and avoid false negatives. Precision symbolizes the 
system's ability to avoid FPs and is the proportion of instances identified as 
attacks/intrusions which are true. F1-score is the harmonic mean of both 
precision and recall. Based on the confusion matrix, the metrics are defined as 
shown in Eq. 7 to 10 [70], [73]: 

      TP TN FP FN

TP TN
Accuracy

+ +

+
=

+

   (7) 

 

  

TP
Precision

TP FP
=

+

    (8) 

 
TP

Recall
TP FN

=
+

     (9) 

                                        
 *  

 +
2

 

Precision Recall

Precision Recall
F score− =     (10) 

 
4.2 Results and Analysis 
 
This subsection presents the results and analysis of the simulations conducted to 
evaluate the performance of the proposed CPP-IDS framework. The results are 
presented twofold: placement of controllers and intrusion detection. 
 
4.2.1 Placement of controllers 
 
This subsection presents the evaluation of the proposed CPP in the SDN 
environment. The experiment was done on real-time simulation using the Mininet, 
ONOS web UI network simulation tool etc. The results obtained are based on the 
number of controllers, C2S assignments, latency, controller load and reliability. 
 

1) Number of the controllers: Based on the designed network topology, C3 optimal 
controllers were recommended by our model to be deployed in the network. 
About 20 host devices were required to achieve 18 flow rules and 6 connected 
flow switches while 2GB CPU memory was utilized based on the generated 
traffic. Based on the deployed controllers, 30 active links were recorded. 
Table 6 summarizes the results of the deployed number of the controller 
consisted of the SDN networks. 
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Table 6. Deployed number of the controller 

 
2) Controller to switch assignments: Our model found that 1 assigned switch 

generated fewer flow rules as compared to 2 and 3 switches. This shows that 
the higher the number of switches, the higher the generation of the flow rules 
in the SDN networks. Thus, a single switch recommended a minimum of 3 
flow rules, 2 switches recommended a minimum of 10 flow rules and 3 
switches recommended 18 flow rules. Table 7 presents the required S-C to 
be employed in the clustered subdomain network without overfitting the 
active switches in the network. 

 
Table 7. Summarized controller-to-switch results 

 
3) Latency: In terms of latency, our model achieved a promising latency. It 

significantly minimized the C-C and S-C latency which are the time taken for 
computational tasks between controllers and between controllers and 
switches. Table 8 presents the results obtained in terms of processing latency 
and C-C latency during SDN traffic communication. 

 
Table 8. Network latency 

 
4) Load balance: Our model computed load balancing and recommended a load 

of about 0.069lb to accommodate 3 flows, while 0.027lb for 10 flows, and 

Criteria Value 3 Value 2 Value 1 

Total host devices 20 10 5 
OvS 6 3 1 

Number of flow rules 18 10 3 
CPU memory 64GB 64GB 64GB 

CPU utilisation 30% 10% 10% 
Controller response 

time 
50ms 30ms 20ms 

Links 30 20 6 
Device status Reachability Reachability Reachability 

Controller container 1 1 1 

No. of connected switch 6 2 1 

Open flow rules 18 10 5 

Connection True True True 

Network interface 172.192.10.101 172.192.10.101 172.192.10.101 

Container 172.168.10.1 172.168.10.2 172.168.10.3 

Links 30 20 6 

OpenFlow Port  8181 8181 8181 

Criteria Processing latency (s) Values 

Inter-latency 𝑎(𝑖) = S-C ONOS to switch 0.958s 

Intra-latency b(i) = C-C ONOS to ONOS 1.891s 
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0.833lb for 18 flows. This validated the saying that the load on the controller 
should not exceed its capacity. When the load on the controller is greater than 
its capacity the load was shared with other available and active controllers. 
Table 9 presents the summarised results of the load balancing and the 
capacity of the controller. 

 
Table 9. Load balancing in the network 

 
5) Reliability: Reliability was achieved by computing the multi-paths between the 

controllers. Due to attacks on the controller, the load one controller was 
reassigned to other available and active controllers. Moreover, we excluded 
the attacked controller from the traffic communication; thus, the newly 

placed controller location maximized the distance θ = 1.4m. Table 11 
summarises the reliability condition once the controller is affected by an 
anomaly attack. 

 

Table 10. Summarized reliability results θ 

 
4.2.2 Network anomalies detection 
 
This section presents the evaluation of the proposed IDS for maximizing security 
in the SDN ecosystem. Detection is an anomaly flow-based model that leverages 
the traffic flow of the network to detect attacks. Based on the designed network 
topology, we generated the traffic that includes the device ID, bytes, packet, 
length, and payload. The traffic flow stats were grouped into normal and 
anomalous flows where “+/1” denotes the normal traffic outcome, and “-/0“is 
the abnormal in the network. Moreover, an attack is detected if the 1.096 threshold 
value is exceeded in the network. Table 11 presents the obtained results during the 
traffic classification and detection. 

Criteria Value 1 Value 2 Value 3 

Controller container 1 2 3 
Host devices 5 10 20 
Traffic flows 3 10 18 

Traffic statistics 72 72 72 
Controller capacity 72cc 36cc 24cc 

Load balancing 0.069lb 0.027lb 0.833lb 
Open flow switch 1 3 6 

Criteria Value 1 Value 2 Value 3 

Controller container 1 2 3 
Host devices 0 10 20 
Traffic flows 0 10 18 

OVS 0 3 6 
Status reliability 0 1 1 
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Table 11. Classification and detection results 
Criteria Results 

Classification accuracy 100% 
Precision 100% 
F1 - score 100% 

n_neighbor 5 
Anomaly 8 
Threshold 1.096 

Threshold percentile 95% 

 
To further evaluate the effectiveness of the proposed IDS model in the SDN by 
injecting DDoS attacks into the network. We utilized the Ubuntu environment 
terminal and ran a set of multiple commands to launch DDoS attacks on the 
selected nodes of the designed SDN. We evaluated how the launched packets 
impacted the traffic data communication as well as how the KNN model 
technique identified the DDoS attacks based on the threshold percentile. We 
launched different sizes of packets to the various destination IP address nodes. 
That is 64 bytes of DDoS packet attacks were directed to the destination IP 
addresses that include: 10.0.0.2, 10.0.04, 10.0.0.3, 10.0.0.5, and 10.0.0.14. Table 12 
presents the set of injected DDoS traffic commands in the SDN environment. 

 
Table 12. Summarized DDoS Anomaly Attack details 

 
The proposed IDS model was effective against all forms of network anomalies. 
We evaluated mitigation policies based on the predefined policy to accurately 
identify DDoS packet attacks in the SDN subdomain network. The proposed 
policy in Table 4 is on the identified DDoS anomaly packet attack. The model 
performed the mitigation action and monitored the state of our SDN environment 
in the real-time simulation. The enforced policy was used to take actions against 
alerted DDoS attacks in the network in terms of the number of data packets 
suspended, excluded, pushed, and dropped during the failure because of the 
DDoS attack in the SDN environment. We also evaluated how many flow rules 
were required to be migrated in the network based on the failed controller. Table 
13 presents the results obtained after the mitigation action policy was invoked on 
the injected flow data. 

 
 
 

DDoS attack Description 

ping -c 5 -s 64 10.0.0.2 Send the 5 packets of 64 bytes to the host IP address 10.0.0.2 
ping -c 6 -s 64 10.0.0.4 Send the 6 packets of 64 bytes to the DST IP address 10.0.0.4 
ping -c 4 -s 64 10.0.0.3 Send the 4 packets of 64 bytes to the host IP address 10.0.0.3 
ping -c 2 -s 64 10.0.0.5 Send the 2 packets of 64 bytes to the host IP address 10.0.0.5 
ping -c 2 -s 64 10.0.0.14 Send the 2 packets of 64 bytes to the DST IP address 

10.0.0.14 
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Table 13. Enforced policy results. 

 
 

 
Figure 5. Anomaly detection 

 

Furthermore, the effectiveness of the KNN-based IDS model was compared with 
two other ML techniques such as naïve Bayes (NB) and random forest (RF). The 
essence was to evaluate its detection accuracy and the pattern of the traffic 
monitoring and classification on the assumed SDN data packets. As shown in 
Figure5, the results show that the KNN algorithm outperformed NB and RF in 
all three criteria, achieving perfect detection accuracy for DDoS attacks, precision, 
and F1-score with 100% respectively. NB, on the other hand, performs reasonably 
well but has slightly lower accuracy, 84%, and precision 79%. Moreover, RF also 
performs well, especially in terms of precision, with 80% and F1-score with 82%. 
Other factors such as computational efficiency and scalability are critical and will 
be considered to further identify the most suitable algorithm. However, in terms 
of the number of DDoS anomaly attacks detected, both NB and RF detected 12 
attacks while KNN detected only 8 attacks. Thus, although KNN is the best in 
terms of detection accuracy, precision, and F1 score, both NB and RF are more 
effective in identifying DDoS attacks. 
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Criteria Results 

DropEntryFlow attack 5 
ExcludeFlow attack 2 

DropFlow attack 2 
PushControllerFlow 3 

No.of controllers 3 
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4.3 Discussion  
 
This paper introduces a unified framework for CPP and security within the SDN 
ecosystem. By integrating CPP with IDS, we optimize network security, enhance 
threat detection, and improve network performance. Our approach employs ML 
approaches: a clustering-based CPP and a KNN-based IDS to strategically place 
controllers, facilitating real-time traffic analysis and more effective anomaly 
detection. This integration reduces latency in controller-device communication, 
enabling quicker detection and response to security incidents, thereby minimizing 
their impact on network performance and user experience. Cost efficiency is also 
achieved by optimizing resource use and reducing operational expenses related to 
controller and switch deployment, as well as IDS management. Strategic controller 
placement, informed by traffic analysis, reduces the number of necessary 
controllers while extending coverage and detection capabilities. Load balancing is 
attained by evenly distributing network traffic across controllers, considering 
traffic volume, processing capacity, and utilization, which enhances computing 
resource efficiency and network responsiveness. The model also improves fault 
tolerance and resilience by distributing control functions across multiple 
controllers, ensuring service continuity in the event of controller failure. 
Furthermore, the integration facilitates centralized security management, enabling 
consistent security policy enforcement and more effective threat detection and 
response, thus improving visibility, control, and coordination of security 
operations. Improved scalability, although not explicitly addressed, is an additional 
benefit of this integrated approach. 
 
To assess the proposed framework’s efficacy and performance, simulation 
experiments were conducted, and the results were analyzed. These results affirmed 
the framework’s capability to augment detection accuracy, reducing latency and 
costs, as well as load balancing and reliability. A comparative analysis with existing 
literature, detailed in Table 14, focused on controller placement’s impact on SDN 
performance, controller deployment, and anomaly attack detection. The analysis 
highlighted that current CPP implementations lack security integration. Unlike 
disjointed IDS and CPP strategies found in these studies, this paper uniquely 
combines both to offer a comprehensive solution in the SDN environment. 
 

Table 14. Comparison with Related Works 

Author 
Method & 
Algorithm 

Evaluation Challenges 

R Anusuya et al. 
[82] 

KNN, SVM, DT, and 
RF 

SDN environment 
Network scalability & 
mitigation of DDoS 
attack 

Sultan Zavrak et 
al. [83] 

SAnDet -SDN 
anomaly detector, 

SAnDet, an Area 
Under the ROC 
curve 

Anomaly-based 
intrusion detection 
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5. CONCLUSION 
 
In this paper, we have designed an integrated framework for CPP and IDS in the 
SDN environment to provide a comprehensive solution to SDN security and 
performance. The integrated framework utilized clustering and classification 
techniques to achieve controller placement and to detect the anomaly respectively 
in the network. This integration is crucial for reducing costs and latency, while 
maximizing security, load balancing, and fault tolerance. The effectiveness and 
performance were evaluated based on simulation experiments. The results 
obtained demonstrated that the integration of ML-based strategies can provide 
comprehensive solutions in terms of security and performance in the SDN 
environment. The IDS model was further compared with other ML techniques 
such as NB and RF where KNN excels in all criteria. Moreover, this work was 
also compared with CPP solutions in the literature. Based on the findings, show 
that by strategically deploying controllers closer to critical network slices and 
integrating them with IDS, organizations can improve threat detection capabilities, 
improve incident response times, and strengthen overall network security posture 
in dynamic and evolving environments. Our future work will focus on 
incorporating additional ML techniques, such as DL and ensemble methods, and 
improving feature engineering to further improve the model’s detection accuracy. 
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