

Journal of Information Systems and Informatics

Vol. 6, No. 1, March 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935

DOI: 10.51519/journalisi.v6i1.682 Published By DRPM-UBD

464

This work is licensed under a Creative Commons Attribution 4.0 International License.

An Integrated Framework for Controllers Placement and
Security in Software-Defined Networks Ecosystem

Rodney Sebopelo1, Bassey Isong2

1,2Computer Science Departement, North-West University, Mafikeng, South Africa

1rodney.sebopelo@nwu.ac.za, 2bassey.isong@nwu.ac.za

Abstract

In the evolving landscape of Software-Defined Networking (SDN), the strategic
placement of controllers poses a critical challenge that necessitate a precise balance
between network performance and security. This paper presents an integrated framework
for enhancing security and performance in SDN by combining controller placement and
intrusion detection systems (IDS). Unlike existing solutions which were implemented
disjointedly, we propose a holistic approach that leverages the proximity of controllers to
network traffic for real-time threat detection, rapid response, and mitigation of security
attacks. We employ an advanced clustering model for optimal controller placement,
reducing costs and latency while ensuring reliability and balanced loads. In addition, we
utilize k-nearest neighbour (KNN) for efficient anomaly detection in our IDS for
improved network security. Experimental results confirm the framework’s effectiveness in
strengthening SDN security and resilience. The enhanced-DBSCAN-based CPP model
significantly minimized the cost, and latency, and ensured continuous operation in dynamic
SDN environments while the KNN-based IDS shows effectiveness in improving threat
detection capabilities, achieving high detection accuracy of 100% on the LAN dataset,
outperforming other machine learning models such as Random Forest and Naïve Bayes.
The indication is that strategic controller deployment, in conjunction with IDS, can
significantly bolster threat detection, response times, and the overall security stance of the
SDN environment.

Keywords: SDN, Controller placement, Intrusion detection, Security attacks, Latency,
Load balancling, Reliability.

1. INTRODUCTION

The traditional network architecture has become obsolete and inadequate for the
current network needs due to its complexity and inherent rigidity in network
management and configuration [1, 2]. The rapid development of information
technology, such as IoT, cloud computing, big data applications, and so on, has
increased the demand for online services that require low latency, high security,
and minimal packet loss, leading to the development of a new network architecture
called software-defined networking (SDN) [3]. SDN emerged as a revolutionary
approach to network management and control as it overcomes the drawbacks of

https://doi.org/10.51519/journalisi.v6i1.682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 465

traditional networks by decoupling the control plane from the data plane. This
allows for centralized control and programmability of network devices, paving the
way for direct programmability and simplification of the network design,
monitoring, and management [4]. The paradigm shift empowers network
administrators to effectively manage and allocate network resources which in turn,
enhances network performance and flexibility [5]. SDN introduction rids out the
need for complex and manual configurations on individual network devices, as
network intelligence is delegated to the software-based controllers. The gathering
of network intelligence streamlines network management and unlocks the avenues
for networking innovation and evolution to support emerging technologies such
as IoT, cloud computing, etc. [6, 7]. SDN also introduces new possibilities for
network security, as the control plane can make dynamic decisions to detect,
mitigate, and prevent network attacks.

SDN is considered a transformative technology that promises to simplify network
management, enable innovation, and enhance network security. However, SDNs
face challenges such as the controller placement problem (CPP) and security
attacks emanating from denial of service (DoS), distributed DoS (DDoS), [8-10],
and so on. For the CPP challenge, the SDN control plane can be either centralized
with a single controller that oversees multiple data plane devices or distributed
with multiple controllers that coordinate with each other [6]. These choices have
a huge cost on SDN’s reliability, scalability, processing capacity, and security [11].
For instance, centralized control has the drawbacks of a single point of failure,
limited processing power, and unsuitability for large-scale networks, while
distributed controllers have the advantages of availability, efficiency, scalability,
and load balancing, but are confronted with complexity and coordination [12].
Therefore, CPP emanated as the problem of determining the optimal number and
location of controllers in a distributed SDN architecture, to achieve the desired
performance metrics such as latency, reliability, load balancing, energy efficiency
and cost [13-15]. Hence a good controller placement is critical to achieving good
quality of service (QoS) and meeting the essential network requirements.
Furthermore, security is a critical challenge that affects or hinders mass adoption
of SDN. SDN is faced with various security vulnerabilities such as controller
vulnerabilities, DoS/DDoS attacks, data privacy concerns, flow table
manipulation, insecure southbound communication, inadequate authentication,
and authorization [9] and so on. These threats are so severe in hybrid and
distributed SDN and require proactive action to address them. For instance, the
SDN relies heavily on centralized controllers for network intelligence, and any
vulnerabilities in these controllers could expose the entire network to potential
attacks or failure, with the centralized control, there's a risk of unauthorized access
to sensitive data, such as network configurations and traffic patterns, which could
compromise privacy and it is susceptible to DoS/DDoS attacks targeting the
control plane, disrupting network functionality by overwhelming the controller
with excessive traffic [16].

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

466 | An Integrated Framework for Controllers Placement and Security in Software

To address these challenges, a comprehensive approach involving robust and
efficient controller placement strategy to enhance SDN’s performance, scalability,
reliability, and security, as well as intrusion detection systems (IDS), ongoing
monitoring and updates to mitigate emerging threats in the evolving landscape of
SDN security have been developed and deployed. Particularly, there are various
methods and algorithms to solve the CPP, such as integer linear programming
(ILP), bio-inspired, heuristic algorithms, and machine learning (ML) techniques
[17, 18]. However, an efficient CPP strategy is yet to be achieved. Moreover, over
the years several IDS methods have been developed [19-21] to address the security
susceptibility of the SDN to threats and attacks. IDS is an essential SDN security
component used to monitor network traffic and identify anomalous or suspicious
patterns and behaviours [22]. Several types of IDS exist for SDN including
signature-based, anomaly-based [19, 23, 24], and hybrid IDS and intrusion
prevention systems, which use various techniques, such as ML, deep learning
(DL), and even blockchain coupled with effective feature engineering techniques
to enhance the accuracy and efficiency of intrusion detection. However, existing
solutions to address CPP and IDS in the realm of SDN are disjointed, as both
approaches are implemented separately. Previous studies have shown that SDN-
based CPP solutions cannot be achieved independently, as they are influenced by
other factors such as security issues, controller load balancing issues, and others
[10].

Therefore, this paper presents and implements an integrated framework for
solving the CPP goals and attack-aware strategy in an SDN-enabled wide area
network (WAN) environment. This is to provide a comprehensive solution to
SDN challenges involving performance, reliability, scalability, and security. The
framework utilizes the enhanced DBSCAN method to optimize the processing
latency, load balancing, reliability, and optimal number of controllers needed while
the attack-aware strategy uses the KNN to design an IDS. The main contribution
of this study is summarized as follows:

1. Highlights the performance and security challenges faced in SDN-enable
WAN environments.

2. Proposed an integrated framework that leverages the proximity of
controllers to improve SDN security and dependability. The integrated
framework has both CPP and IDS modules. While the CPP module
ensures optimum controllers’ location and allocation, the IDS detects
network intrusions and anomalous behaviours in real time.

3. We designed and discussed the components of the proposed framework.
The aim is to minimize cost, and latency and maximize reliability and load
balancing.

4. We performed simulation experiments and utilized sets of performance
measures to evaluate the effectiveness of the proposed framework. We
showed promising results in minimizing cost and maximizing security.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 467

The remaining parts of this paper are organized as follows: Section 2 presents the
related works, Section 3 presents a literature review on CPP and IDS, and Section
4 presents and discusses the proposed integrated framework. Additionally, Section
5 presents the evaluation and discussion while Section 6 presents the paper's
conclusion.

2. RELATED WORKS

This section presents some of the important concepts and related works in terms
of existing CPP and IDS approaches in the SDN. We summarize them as follows.

2.1 Controller placement problem

The placement of SDN controllers is a crucial architectural decision that can
significantly impact the performance, scalability, and security of the network [25].
The CPP has been considered a challenging optimization problem designed to
find the optimal number and location of controllers in the network environment
[26]. To achieve the optimal number of controllers to effectively manage the
network, factors such as network size, complexity and desired performance
metrics are essential while controller location within a given network topology
ensures the minimization and maximization of the network objectives but can be
constrained by bandwidth limitations, physical infrastructure, security
considerations, and so on. Thus, this problem is NP-hard in nature, as there is no
efficient algorithm to find the optimal solution in polynomial time. In the SDN,
CPP is generally formulated by modelling the networks with multiple nodes and
link as an undirected graph, G <S, L, C> to represent the network topology, where
S represents the set of switches, L the set of physical links between nodes, where
the position of the node is the position of controllers or switches, and C represents

the set of controllers. Moreover, n = S∪C represents the number of network
nodes while k is the number of controllers. Previous studies on SDN mainly focus
on finding the optimal value of optimal S-C assignment. Consequently, the
predefined objective function is optimized with either a single objective or
multiple objectives, such as latency, load balancing, link failure, cost, etc.

In the realm of SDN CPP, a variety of strategies have been developed to achieve
optimal placement outcomes. These strategies include heuristic and metaheuristic
methods, Integer Linear Programming (ILP), bio-inspired algorithms, and ML-
based techniques [19, 27, 28]. The primary objectives of these approaches are to
optimize key performance metrics such as latency, reliability, cost, and load
balancing [29, 30]. While some methods focus on optimizing a single metric [31,
32], others aim to address multiple metrics simultaneously [33], leading to a
spectrum of Pareto-optimal solutions, where improving one metric may
compromise another. Minimizing latency is crucial for reducing communication

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

468 | An Integrated Framework for Controllers Placement and Security in Software

delays within the network, and it is categorized into average latency for S-C, worst-
case S-C latency, and average C-C latency, which includes processing time [34, 35].
Cost minimization is achieved by deploying fewer controllers, thereby enhancing
the economic efficiency and feasibility of the network through reduced capital and
operational expenditures, as well as lower energy consumption [36]. Maximizing
reliability is essential to maintain network functionality in case of controller
failures, affecting both network availability and fault tolerance [37]. Strategies to
enhance reliability include deploying multiple controllers, establishing multiple
control paths, and minimizing control path lengths [22]. Load balancing across
controllers is also vital to prevent overloading, which influences the network’s
scalability, QoS, and robustness [38]. Controller placement is further influenced
by traffic patterns and security considerations [39]. Analyzing network traffic
patterns helps identify critical points for controller placement to manage traffic
effectively. Secure placement of controllers is imperative to mitigate risks such as
unauthorized access or control plane attacks.

In recent studies, innovative techniques have been proposed to optimize SDN
CPP. Jiang et al. [40] developed a predictive SDN configuration model using
neural networks and boosting regression, which proved superior to deep learning
models in experimental evaluations. Singh et al. [41] focused on minimizing
network latency and enhancing reliability, even with the failure of multiple
controllers, by designing a capacitated controller arrangement. Their findings
showed that a setup with three controllers could maintain excellent performance
despite controller failures. Further, Singh et al. [42] presented a mathematical
model for CPP and RCPP, aiming to reduce average latency while considering
controller capacity and load as constraints. They compared their varna-based
optimization method with established heuristic algorithms like PSO, Jaya, and
WOA. Ramya et al. [43] also proposed an ML-based approach to manage network
traffic by predicting the optimal number of controllers needed, utilizing the k-
medoid algorithm for placement, thereby advancing network automation by
integrating SDN and ML technologies.

Benoudifa et al. [44] introduced an intelligent system that employs self-
competition, combining tree search with a learned model, to train for optimal
game placement in network topologies, focusing on metrics like latency and load
balancing. Their experimental benchmarks validated the system’s effectiveness.
Similarly, Almakdi et al. [45] developed a novel load-balancing method using
hierarchical agglomeration clustering and backpropagation neural networks,
segmenting network services into groups based on normalized data requirements
and evaluating based on network delay, packet loss, and latency. Joshua et al. [46]
also applied a clustering technique for optimal controller placement, assessed using
the Mininet emulator and silhouette scores to determine the ideal number of
controllers for various topologies. In a similar effort, Chen et al. [47] proposed a
density-based controller placement algorithm (DCPA) for joint latency

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 469

optimization, which segments the network into subnetworks and strategically
places controllers to minimize average and worst-case latencies. Tested on eight
real network topologies, DCPA demonstrated optimal performance with low time
consumption. Moreover, Abeer et al. [48] presented a dynamic mapping based
CPP technique for distributed architectures, enhancing system reliability and
availability. They combined a heuristic CPP algorithm with metaheuristic particle
swarm optimization (PSO) for a hybrid approach that balances reliability and cost-
effectiveness. Concurrently, Hui Xu et al. [49] suggested a multi-controller
placement strategy using an improved Harris Hawks algorithm, considering local
controller load limits, and employing a Sin chaotic map for CPP initialization.
Their approach considers total latency, node reliability, link failure rates, and
placement costs.

2.2 SDN Security and Intrusion Detection

SDN as a revolutionary network architecture that promotes programmability,
flexibility and scalability of network resources is faced with several security
challenges and vulnerabilities, both from internal and external threats [3]. These
threats target the different layers of SDN architecture. Some of these threats
include controller vulnerabilities to attacks such as hijacking, flooding, poisoning,
and compromising, etc., designed to take over the network, overload the controller
with fake requests, inject malicious rules or commands, or compromise the
controller’s integrity or availability [50, 51]. The data plane is also susceptible to
attacks such as spoofing, tampering, DoS/DDoS, man-in-the-middle, etc.
designed to interrupt the network’s normal operations, modify, or steal sensitive
network/user data, or impersonate legitimate devices or users, etc. [52]. Moreover,
the application layer is confronted by attacks such as malicious codes,
unauthorized access, data leakage, etc. which aim to illegally access network
resources, execute malicious code on the controller or the devices, and even
expose sensitive data to unauthorized parties, etc. [53]. Others include the lack of
standardized security protocols and practices in different SDN implementations
resulting in inconsistencies and breaches in security measures, etc. [54]. Therefore,
tackling these challenges in the evolving realm of SDN requires a comprehensive
approach that involves robust mechanisms, protocols, tools such as IDSs, and
continuing monitoring and updates to mitigate developing threats.

SDN, despite its transformative impact on network resource management through
enhanced programmability, flexibility, and scalability, encounters numerous
security challenges. These challenges stem from both internal and external threats
that exploit vulnerabilities across the SDN’s various layers [3]. At the controller
level, threats such as hijacking, flooding, poisoning, and compromising attacks aim
to seize control of the network, inundate the controller with spurious requests,
insert malevolent rules, or undermine the controller’s integrity and availability [50,
51]. The data plane is not immune, facing threats like spoofing, tampering, DoS,

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

470 | An Integrated Framework for Controllers Placement and Security in Software

and man-in-the-middle attacks, which disrupt normal network operations, alter or
pilfer sensitive data, or masquerade as legitimate entities [52]. The application layer
is also a target, with risks including malicious code execution, unauthorized access,
and data breaches, all of which threaten to illicitly exploit network resources,
compromise devices, and leak sensitive information [53]. Compounding these
issues is the absence of uniform security protocols across different SDN
implementations, leading to security inconsistencies and vulnerabilities [54].
Addressing these multifaceted security concerns necessitates a holistic strategy that
incorporates strong security mechanisms, protocols, and tools like IDS, alongside
continuous monitoring, and updates to counteract emerging threats. IDSs have
been increasingly incorporated into SDN to bolster network security. These
systems enable real-time traffic monitoring and analysis, facilitating centralized
control, dynamic policy updates, resource optimization, and adaptive security
measures [55, 56]. IDS in SDN employ two primary detection methods: signature-
based and anomaly-based [57, 58]. Signature-based IDS compares network
activities against a database of known attack patterns to identify intrusions [59],
but they are ineffective against novel threats. In contrast, anomaly-based IDS
detect irregularities by comparing traffic against a baseline of normal activity,
offering protection against both known and novel attacks, albeit with a higher risk
of false positives [60, 61]. Anomaly detection often utilizes ML techniques,
including supervised, unsupervised, reinforcement, and DL to efficiently detect
network anomalies [62-66]. ML-based IDS within SDN are designed with modular
components that enhance attack detection, including traffic data collection,
anomaly identification, mitigation, and reporting functions [67].

In the field of SDN-based IDS, Logeswari et al. [68] introduced the HFS-LGBM
IDS, utilizing a two-phase HFS algorithm for optimal feature selection and Light
Gradient Boosting Machine (LightGBM) for attack detection. Alzahrani et al. [69]
generated datasets with the Ryu controller and Mininet, training various ML
algorithms like AdaBoost and DT, with DT achieving a 0.99% F1 score. Shaji et
al. [70] developed an intelligent IDS for SDN, utilizing two ensemble ML models
to classify DDoS attacks. Their multi-class RF-LR model demonstrated high
performance with 99.45% precision and 99.46% sensitivity, outperforming the
SVC-RC model. In a similar vein, Seneha et al. [71] introduced the Real-time
Anomaly Detection System (RADS), which capitalizes on SDN’s capabilities and
uses a dynamic threshold for real-time anomaly detection through ML techniques
like ARIMA. The system alerts users to malicious activities within 150
milliseconds, using Mininet for SDN topology, Elasticsearch for data storage, and
ARIMA, LR, and Prophet models for anomaly detection. Dubem et al. [72]
investigated the application of Generative Adversarial Networks (GANs) for
anomaly detection in SDN, utilizing the GENI testbed. The study proposed a
comprehensive controller-based framework to address common network attacks,
demonstrating GANs’ potential to identify diverse anomalies. Equally, Yousif et
al. [73] combined Ryu, Mininet, and a 1D-CNN to detect and counter DDoS

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 471

attacks, achieving a 99.99% detection accuracy rate, outperforming other ML
models like LR, RF, SVM, and KNN. Likewise, Mohamed et al. [74] introduced
ML-based network intrusion recovery strategy, a novel technique for intrusion
recovery in SDN that leverages traffic pattern analysis for strategic backup path
selection, significantly reducing recovery time by up to 90% compared to
traditional methods.

The studies mentioned represent significant advancements in CPP and IDS within
the SDN framework. Although these methods effectively enhance network
efficiency, performance, scalability, and security, they are typically deployed in
isolation. This separation is a notable issue, and this paper aims to bridge this gap
by proposing an integrated framework that concurrently addresses SDN’s CPP
and security, offering a unified and robust solution.

3. METHODS

This section presents the proposed integrated framework that combines controller
placement with intrusion detection in the SDN environment. The development
methodology includes theoretical modelling, algorithm creation, and simulation
experiments. Initially, a thorough literature review was performed in Section 2,
provided insights into current techniques, challenges, and trends in SDN, CPP and
IDS. Subsequently, mathematical models were constructed to depict the network,
controllers, and IDS, considering factors such as network topology, network
traffic, security requirements, and performance metrics. The objective is to
ascertain optimal locations for controllers and IDS. To resolve the CPP-IDS
integration, ML algorithms were developed, employing clustering for controller
placement and supervised learning for detecting network anomalies. These
algorithms are intended to enhance SDN performance metrics, including latency,
reliability, controller workload, and security response times. Furthermore, the
framework was tested in a simulated SDN environment using Mininet to evaluate
its performance and effectiveness under various network conditions and attack
scenarios. This involved generating network traffic, injecting security attacks, and
measuring performance in terms of controller location and allocation, latency,
detection accuracy, etc. The framework’s structure and its components are
depicted in Figure 1 and discussed therein.

As shown in Figure 1, the integrated framework in the SDN environment has the
following components: the CPP module, SDN infrastructure and the IDS.

a) CPP module: The CPP module focuses on determining the optimal
placement of SDN controllers within the network topology to improve
the performance and efficiency of the network. We utilized the enhanced
DBSCAN method as the CPP solver for optimum placements. The goal
is to minimize both cost and latency as well as balance controllers’ load
and maximize reliability.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

472 | An Integrated Framework for Controllers Placement and Security in Software

Figure 1. Integrated CPP-IDS architecture

b) SDN Infrastructure: This represents the SDN network infrastructure,
consisting of SDN controllers and switches. The SDN controllers take
charge of managing the network and communicating with switches using
the OpenFlow protocol. They execute control logic and make forwarding
decisions or behaviours of the switches. In addition, the network switches
are responsible for forwarding traffic based on instructions received from
the controller.

c) IDS module: This module is responsible for detecting intrusions and
anomalous behaviours within the network traffic. It analyses incoming
traffic data to the network to identify potential security threats such as
DoS/DDoS, etc. It implements algorithms and techniques/policies for
detecting intrusions and security attacks in real time by continuous
monitoring of network traffic and data collection from switches. We
utilized the KNN algorithm to implement the detection algorithm.

All these components in the framework contribute to optimizing controller
placement alongside robust intrusion detection capabilities.

3.1 Controller placement formulation

In the context of SDN, the placement of controllers is a critical architectural
decision that significantly impacts network performance, scalability, and security.
This section introduces an integrated framework designed to address the
challenges of CPP and security within SDN. The framework employs multiple
distributed controllers across a WAN to ensure network availability, minimize
delays, and manage controller processing loads effectively. It also emphasizes the

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 473

strategic placement of controllers in secure locations to reduce the risk of
unauthorized access and control plane attacks, thereby maintaining high QoS and
user experience. The CPP strategy aims to optimize controller and switch
assignments, reduce C-C and S-C latencies, enhance load balancing across
controllers, and bolster network reliability to prevent single points of failure. The
main goal of the network is articulated and defined to align with these objectives.

CPP = min ∑ (C+ L
n

k=1
)+ max ∑ (C

LBD
+R+ S)

n

k=1
 (1)

Where:

a) Cost: Cost (C) involves the number of controllers to be deployed and the
number of switches assigned. The number of controllers is denoted by

Nctr and is achieved via training the collected traffic data to predict the
optimal number and location of the controller in the network. It also
involved the number of cluster subdomains required in the SDN network.

Nctr=min ∑ L(Ck)
n

k = 1
 (2)

b) L(Ck) denotes the optimal number (k) and location of the controller in
the network, and n = 1,..., N is the number of the placed controllers in
the network. Moreover, the number of switch assignments denoted by

𝑁𝐶𝑡𝑟 → 𝑆𝑤 represent the number of data nodes assigned to a specific
controller in the network and belong to the members of the specific
subdomain network. We maximized the subdomain cluster network from
the location of the controller network range for traffic communication
and minimized the least members of the core data nodes (β).

NCtr → Sw= max ∑ d(v, z')
k

v∈V
 (3)

In Eq.(3), 𝑑(𝑣, 𝑧′) is the maximized range of subdomain network
communication from the placed controller to the subdomain cluster

members. The least core data nodes are contained within the 𝑑(𝑣, 𝑧′) of
the subdomain cluster network without overfitting.

c) Latency: In SDN, the latency can be analyzed from different approaches:
(1) processing latency is the time both at the controller side (processing
requests and generating instructions) and at the switch side (processing
and applying instructions). These are measured by S-C – average and S-C
– worst and the S-C latency. (2) C-C latency is the communication latency
between different SDN controllers in the distributed architecture. We
aimed to minimize both S-C and C-C latencies.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

474 | An Integrated Framework for Controllers Placement and Security in Software

d) Load balancing (CLBD): This is achieved based on mathematical analysis and
comparison of the controllers’ load with its capacity. Once the load on

the controller exceeds its capacity i.e., 𝐶𝐿𝐵𝐷 > 𝜑(𝑦), the load is shared
among other available and active controllers in the network.

CCapacity =
Collected traffic statistics φ(x)

Oveall placed controller (φ(z''))
 = φ(y) (4)

Eq.(4) computes the controllers’ capacity 𝜑(𝑦), 𝜑(𝑥) is the collected

traffic data and 𝜑(z′′) denoted the overall number of placed controllers
in the network.

CLBD =
β(x)× d(v,z')

Collected traffic statistics φ(x)
 (5)

Eq.(5) formulates the threshold load on the controller based on the

number of the received traffic data, 𝛽(𝑥) denoted the least core data

nodes contained by the 𝑑(𝑣, 𝑧′). Thus, the threshold is exceeded, and the
load is balanced using Eq.(2).

e) Reliability (R): We computed the C-C and S-C time processing using the
multi-path alignment method. This is to forward the load on the failed
controller to another active or available controller. This is achieved by
minimizing the time required by the controller to control the forwarding
load, the time required to forward the load between the controllers should
not exceed the required time in the network.

MCP Ctr[1]→Ctr[2] = MCP Ctr[2]→Ctr[3] = θ (6)

f) Security: Security (S) in eq. 1 represents security which is one of the core

objectives to maximize in this work. We aim to maximize SDN security
by placing controllers strategically to minimize control traffic overhead
and within a secure place to mitigate security risks associated with attacks
such as DoS/DDoS. This is achieved by the integration of a robust ML-
based IDS in the SDN environment.

3.2 Optimum controller placement algorithm

This subsection presents the proposed CPP algorithm that directly impacts the
SDN network's performance, scalability, and resilience in terms of maximum
security, load balancing, reliability and minimum cost and latency. that is, the
placement algorithm satisfies the number of the required controllers, switch
assignments, processing latency, C-C and S-C, controller processing latency or
load balancing, and reliability. We utilized the enhanced DBSCAN algorithm [75,
76], motivated by some benchmarked performance from the widely known

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 475

clustering algorithms [77, 78]. Moreover, we decoded the collected LAN traffic

statistics (v1, v2, v3 … . . vk) ∈ V using Wireshark software. The proposed
optimum placement algorithm is captured in Figure 1.

Figure 2. Controller placement algorithm

As shown in Figure 2 derived the model technique for the number of the required
controllers, switch assignment, load balancing, and reliability. We first find the
shortest path between each pair of the nodes calculate the required distance, and
find the controller location that minimizes the processing latency, the required
number of the controller was formulated using equation 2. Moreover, we derived
the processing latency an (i) and b(i) using steps 2 and 3 for the time required to
process the packet in the network. We further derived the controller-to-switch
assignment which is the assigned path from one controller to the switch that
minimizes the processing latency using equations 4 and 5. That is capacity and load
on the controller formulated using steps 6 and 7, where B(x) is the collected traffic

statistics, 𝑑(𝑣, 𝑧′) derived the distance path of the controller to switch, and

(𝜑(z′′)) is the derived optimally placed controllers. Furthermore, we derived the
multi-path alignment paths using the computation of equation 6, that is the time
required to forward the load between the controllers was compared to the
availability of the active and placed controllers. Once the approach is performed,
we derived the intrusion detection on the nodes and was derived using algorithm
2 in Figure 3.

Algorithm 1: Algorithm for achieving the controller placement

Input: Topology network nodes (v ∈ V)

Output: (𝑁𝑐𝑡𝑟, 𝑁𝐶𝑡𝑟 → 𝑆𝑤, 𝐶𝐿𝐵𝐷 network topology)
1. Read the topology nodes and find the shortest path

2. Compute the 𝑁𝑐𝑡𝑟, 𝑁𝐶𝑡𝑟 → 𝑆𝑤, 𝐶𝐿𝐵𝐷 and adjacent nodes
3. Verify the node belonging to the subdomain network
4. Compute the (d (x’s, y) == k) on the network nodes

5. For all of v ∈ V
6. node number = 1
7. else node number = 0
8. If node number = 0
9. Store and calculate the distance of the node = 0
10. Obtain the adjacent topology belonging to the node number = 0
11. Assign each node to the closest cluster centroid

12. Search for 𝑁𝑐𝑡𝑟, 𝑁𝐶𝑡𝑟 → 𝑆𝑤, 𝐶𝐿𝐵𝐷 new solution
13. Repeat statement (5)(6)(7)

 14. End

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

476 | An Integrated Framework for Controllers Placement and Security in Software

3.3 Intrusion detection

This section presents the design of the proposed IDS model for ensuring
maximum security in the SDN environment. The proposed detection architecture
is anomaly-based flow detection, automatic and modular, leveraged by SDN’s
architectural functionalities such as the OpenFlow and ML technique. It
automates network monitoring in real-time and the detection of anomalous traffic
flows or malicious behaviours by alerting the administrators and invoking
mitigative actions to thwart the attack in the network. The proposed IDS model
in this work provided a positive effect and increased security measurement in the
SDN environment [22]. Though several IDS and security countermeasures have
been proposed and developed for the SDN, many of these systems are less
efficient, have low precision, are not effective in real-time operation and exert so
much burden on the controller in terms of network monitoring, flow table
information updating, anomalous flow detecting, etc. To address this challenge,
our proposed model was based on the application plane during anomaly detection.
The IDS model shown in Figure 1 has several interrelated components that
contribute to the detection of anomaly flow attacks in the SDN. This includes
modules for the collection of traffic statistics, anomaly detection, mitigation, and
reporting.

3.3.1 Traffic collection module

In this module, we showed how the traffic was read in the form of (v1,

v2, v3 … . . vk) ∈ V where V is the overall collected traffic statistics sent and

received during the traffic operation. Moreover, vk is the ith traffic flow selected
features extracted as shown in Table 1.

Table 1. Extracted features from the collected Vi
Extracted feature Description

Deviceid The device used for the transmission of the traffic flow

Bytes The bytes associated with the transmitted flow data
Packets The size associated with the transmitted data
Duration The time associated with the delivered data
Priority The priority of the data in the network
TableId The identity of the table associated with the delivered data
Payload The payload associated with the data flow

3.3.2 Anomaly detection module

This module deals involves traffic classification for the detection of anomalous
flow. It utilizes the KNN algorithm, an ML technique to identify anomalous
events in the network by performing deep packet inspection and analysis on
collected traffic flow. Detailed information about the injected anomalous flow is

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 477

shown in Table 2. Metrics were used to evaluate and correlate classified traffic,
and the identified attacks were sent to the anomaly mitigation module.

Table 2. Anomaly attack packet details

Moreover, the model categorized the detection into normal and anomalous flows.
As shown in Table 3, “+/0” denotes the normal traffic, while “-/1“is abnormal in
the network. This traffic classification was enabled by adopting the described
function and generating descriptive statistics. The employed data were split into
training and testing, that is 80% for the training and 20% for testing. This is
because the higher the classification accuracy signified the dispersed probability
distribution, while the lower denoted the concentration of the data distribution.

Table 3. Normal and anomaly effects on the traffic feature

Furthermore, the trained traffic features were subsequently fed to the anomaly
detection module, an efficient anomalous flow detection which uses the KNN
algorithm. KNN is a supervised ML algorithm used for classification tasks, where
it can assign labels to unlabeled data points based on the labels of neighbouring
data points in the training dataset [79, 80]. In this study, we trained and correlated
the dataset identifying anomalous events and forwarded the detection report to
the mitigation module. For anomalous event detection, the Euclidean distance is
applied. We computed and defined the threshold value that determined the
anomaly flow attack, and defined the rules to trigger the alert when the traffic
exceeds a certain threshold. That is the flow rules above the threshold are
considered as the potential attack. Once identified as a potential attack, the
controller acts and reports the malicious data. The KNN-based anomaly detection
algorithm is shown in Figure 3

Information Description

ping Used to send the ICMP echo request packets to the target host
or the IP address.

-c Number of the sent data packets in the network
-s The sent packet size in the network

Target IP address The information about the target communication address
Time Round trip time about the packet details

Packet loss Information about the transmitted packet

Type
 Affected feature traffic pattern

Bytes Packets Duration Priority/ Table id

Normal +/1 +/1 +/1 +/0
Anomaly -/0 -/0 +/1 -/1
Anomaly +/1 +/1 -/0 +/1
Anomaly -/0 -/0 +/1 -/1
Anomaly -/0 -/0 -/0 -/1

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

478 | An Integrated Framework for Controllers Placement and Security in Software

As shown in Figure 3, we derived our intrusion detection model technique,

Finding k the number of the network nodes belonging to the topology v ∈ V, we
computed the square of the distance of the adjacent nodes belonging to the
topology output, we calculated the threshold of the topological network nodes and
search for all the network nodes belonging to the anomalous nodes, we obtained
the network nodes belonging to the number = 1, that is the DDoS potential attack,
we removed the network node = 1 from the overall topological network, we
performed the statement 3 and 4 based on the threshold segregating the network
topological network nodes, then, we searched for the adjacent network nodes
number = 0 and allocated the nodes to the network subdomain, we repeated the
statement (2)(3) and (7) on the adjacent and new network nodes.

Figure 3. Intrusion detection algorithm

3.3.3 Mitigation module

This presents the applied mitigation actions on the traffic flow associated with
anomalous flow detection. The policies include DropFlowData - dropping of the
traffic flow data, ExcludeFlowData - exclusion of the flow data, DropEntryFlow-
dropping of entry flow, and PushControllerLoad - pushing of the controller’s load
to the neighbouring controllers. With these actions, DropFlowData ignores and
deletes any flow associated with the anomalous traffic flow in the SDN while
DropEntryFlow blocks the entry flow communication from the specific host to
the specific services in the destination IP address. Moreover, the
ExcludeFlowData ignores the entry flow after distributed IDS make an alert about
the anomaly attack in the network, and PushControllerLoad pushes the load on
the attacked controller to the neighbouring or new controller. To ensure the above
actions are enforced correctly, Table 4 summarizes the function policies
implemented in Figure 4 on the SDN environment to mitigate detected anomalous
flow in the SDN. Figure 4 presents the algorithm that implements the formulated

Algorithm 2: Distributed intrusion detection algorithm

Input: Topology network nodes (v ∈ V)

Output: v ∈ V based attack topology nodes

 1. Compute k belongs to the network nodes
 2. Calculate the square distance d (x’s, y) of the adjacent nodes
 3. Calculate the threshold of the adjacent nodes
 4. Obtain the adjacent network node number = 1
 5. Remove the node = 1 out of the topology network
 6. Repeat statement (3)(4) on the network nodes = 1
 6. Search k for all the network adjacent nodes = 0
 7. Allocate the node number = 0 to the adjacent cluster network subdomain
 8. Repeat statement (2)(3)(7) for all the new network nodes = 0
 9. End

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 479

function policy used to manage the effective detection and necessary mitigation
actions taken in the SDN network.

Table 4. Implemented function policy
Criteria Match criteria Action

DropFlowData

Utilized controller and
defined the flow table in
switches, the rule dictates
how the network traffic is
processed.

Drop the flow rule/s associated with
the identified DDoS attack.
controller > drop the source IP flow rule
associated with the ID anomaly attack.

ExcludeFlowData

Set the matching packet
rule and identify any
related packets associated
with the attack attributes.

Exclude the identified flow rule
associated with the DDoS flow rule
required to duplicate the traffic flow
rule.
controller > exclude the id flow rule
required to mimic the source and
destination IP address.

DropEntryFlow

Dictate any flow rule
matching the IP address
associated with the
anomaly attack in the
network.

Drop the source IP address flow
matching the entry flow data packet
related to the anomaly attack.
controller > drop the source IP address
related to the ID anomaly attack

PushControllerLoad

Evaluate controller failure
rate and how flow rules
are forwarded from the
source to the destination.

Push the load of the affected
controller to the target controller.

Figure 4. Policy enforcement algorithm

Algorithm 3: Enforced function policy algorithm

Input: Receive the x’s – traffic attribute flow stats
Output: drop / exclude/push flow data
 1. Receive the input traffic flow stats x’s
 2. Characterised x’s → y - payload
 3. Knn fits y → x’s – flow rules
 4. if (x’s, y) → d (x’s, y) == k
 5. forward k → anomalous storage event (A)
 6. while (d (x’s, y) !=k
 7. forward d (x’s, y) → N - x’s → normal

 8. if (d (external’k, y) ==k) ∈ e’k → (external input attack)
 9. drop entry d (e’k, y) == k
 10. forward e’k → anomalous storage event (e’k)

 11. else if (d(internal’k, y) ==k) ∈ inter’k → (internal input attack)
 12. drop flow d(internal’k, y) == k
 13. forward internal’k → anomalous storage events (A)
 14. End

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

480 | An Integrated Framework for Controllers Placement and Security in Software

3.3.4 Reporting module

Once the anomaly attack is mitigated, a report is generated of the anomalous
events, recorded, and stored. The stored events are used to predict any identical
anomalous event that wants to invade the resources of the network. Also, any new
identical anomaly flow and services associated with the recorded anomalous event
are prioritized and mitigation action policy is prioritized before causing any harm
to the network or its resources.

4. RESULTS AND DISCUSSION

This section presents the evaluation of the proposed system that integrates CPP
and IDS to demonstrate its performance and effectiveness in terms of minimum
delay and cost, maximum security, load balancing and fault tolerance in the SDN
network. The evaluation was achieved based on simulations, and the results
obtained were presented and analyzed.

4.1 Experimental simulation setup

To evaluate the proposed system, implementations were performed on the SDN-
enabled environment. The simulations were run on a PC with the Ubuntu 20.04
LTS OS on the VM, a core ™ i7-10610U CPU processor and 16 GB RAM. We
designed a network topology consisting of connected switches with multiple host
devices, and controllers. We employed the address, with the subnet mask, default
gateways, DNS server, and link-local address. The designed network topology is
built to simulate the SDN WAN-enabled network that will be using the controllers
to monitor the traffic communication, and OpenFlow switches to simulate the
SDN virtual environment. We simulated the traffic flow in real time and identified
the DDoS attack in the SDN environment. The results were collected based on
the run-time simulation process of the traffic nodes' communication. The
simulation parameters used are shown in Table 5 and evaluation metrics.

Table 5. Simulation parameters

Simulation Parameter(s) Values

Simulation area - 𝑆𝐴 SDN enabled environment

Simulators - 𝑆𝑇 Mininet, ONOS web UI, VM, python

Number of nodes 𝑁𝐴 20

Number of the switches and controllers

- 𝑆𝐶

6, 3

Controllers - 𝐶𝑁 ONOS

SDN domain - 𝑆𝐷 5

Simulation time - 𝑆𝑇 300s

Traffic type - 𝑇𝑇 UDP and TCP

Size of flow table size - 𝑆𝑇 120 entries

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 481

The evaluation metrics used are the accuracy, precision, and F1-score [70], [73]
which are all based on the confusion matrix where TP is the true positive, TN the
true negative, FP the false positive and FN the false negative in the classification.
Accuracy computes the ratio of the number of correctly classified instances
(attacks and non-attacks) to the total number of instances. Recall measures the
proportion of attacks correctly identified. This represents the system's ability to
detect attacks effectively and avoid false negatives. Precision symbolizes the
system's ability to avoid FPs and is the proportion of instances identified as
attacks/intrusions which are true. F1-score is the harmonic mean of both
precision and recall. Based on the confusion matrix, the metrics are defined as
shown in Eq. 7 to 10 [70], [73]:

 TP TN FP FN

TP TN
Accuracy

+ +

+
=

+

 (7)

TP
Precision

TP FP
=

+

 (8)

TP

Recall
TP FN

=
+

 (9)

 *

 +
2

Precision Recall

Precision Recall
F score− =  (10)

4.2 Results and Analysis

This subsection presents the results and analysis of the simulations conducted to
evaluate the performance of the proposed CPP-IDS framework. The results are
presented twofold: placement of controllers and intrusion detection.

4.2.1 Placement of controllers

This subsection presents the evaluation of the proposed CPP in the SDN
environment. The experiment was done on real-time simulation using the Mininet,
ONOS web UI network simulation tool etc. The results obtained are based on the
number of controllers, C2S assignments, latency, controller load and reliability.

1) Number of the controllers: Based on the designed network topology, C3 optimal
controllers were recommended by our model to be deployed in the network.
About 20 host devices were required to achieve 18 flow rules and 6 connected
flow switches while 2GB CPU memory was utilized based on the generated
traffic. Based on the deployed controllers, 30 active links were recorded.
Table 6 summarizes the results of the deployed number of the controller
consisted of the SDN networks.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

482 | An Integrated Framework for Controllers Placement and Security in Software

Table 6. Deployed number of the controller

2) Controller to switch assignments: Our model found that 1 assigned switch

generated fewer flow rules as compared to 2 and 3 switches. This shows that
the higher the number of switches, the higher the generation of the flow rules
in the SDN networks. Thus, a single switch recommended a minimum of 3
flow rules, 2 switches recommended a minimum of 10 flow rules and 3
switches recommended 18 flow rules. Table 7 presents the required S-C to
be employed in the clustered subdomain network without overfitting the
active switches in the network.

Table 7. Summarized controller-to-switch results

3) Latency: In terms of latency, our model achieved a promising latency. It

significantly minimized the C-C and S-C latency which are the time taken for
computational tasks between controllers and between controllers and
switches. Table 8 presents the results obtained in terms of processing latency
and C-C latency during SDN traffic communication.

Table 8. Network latency

4) Load balance: Our model computed load balancing and recommended a load

of about 0.069lb to accommodate 3 flows, while 0.027lb for 10 flows, and

Criteria Value 3 Value 2 Value 1

Total host devices 20 10 5
OvS 6 3 1

Number of flow rules 18 10 3
CPU memory 64GB 64GB 64GB

CPU utilisation 30% 10% 10%
Controller response

time
50ms 30ms 20ms

Links 30 20 6
Device status Reachability Reachability Reachability

Controller container 1 1 1

No. of connected switch 6 2 1

Open flow rules 18 10 5

Connection True True True

Network interface 172.192.10.101 172.192.10.101 172.192.10.101

Container 172.168.10.1 172.168.10.2 172.168.10.3

Links 30 20 6

OpenFlow Port 8181 8181 8181

Criteria Processing latency (s) Values

Inter-latency 𝑎(𝑖) = S-C ONOS to switch 0.958s

Intra-latency b(i) = C-C ONOS to ONOS 1.891s

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 483

0.833lb for 18 flows. This validated the saying that the load on the controller
should not exceed its capacity. When the load on the controller is greater than
its capacity the load was shared with other available and active controllers.
Table 9 presents the summarised results of the load balancing and the
capacity of the controller.

Table 9. Load balancing in the network

5) Reliability: Reliability was achieved by computing the multi-paths between the

controllers. Due to attacks on the controller, the load one controller was
reassigned to other available and active controllers. Moreover, we excluded
the attacked controller from the traffic communication; thus, the newly

placed controller location maximized the distance θ = 1.4m. Table 11
summarises the reliability condition once the controller is affected by an
anomaly attack.

Table 10. Summarized reliability results θ

4.2.2 Network anomalies detection

This section presents the evaluation of the proposed IDS for maximizing security
in the SDN ecosystem. Detection is an anomaly flow-based model that leverages
the traffic flow of the network to detect attacks. Based on the designed network
topology, we generated the traffic that includes the device ID, bytes, packet,
length, and payload. The traffic flow stats were grouped into normal and
anomalous flows where “+/1” denotes the normal traffic outcome, and “-/0“is
the abnormal in the network. Moreover, an attack is detected if the 1.096 threshold
value is exceeded in the network. Table 11 presents the obtained results during the
traffic classification and detection.

Criteria Value 1 Value 2 Value 3

Controller container 1 2 3
Host devices 5 10 20
Traffic flows 3 10 18

Traffic statistics 72 72 72
Controller capacity 72cc 36cc 24cc

Load balancing 0.069lb 0.027lb 0.833lb
Open flow switch 1 3 6

Criteria Value 1 Value 2 Value 3

Controller container 1 2 3
Host devices 0 10 20
Traffic flows 0 10 18

OVS 0 3 6
Status reliability 0 1 1

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

484 | An Integrated Framework for Controllers Placement and Security in Software

Table 11. Classification and detection results
Criteria Results

Classification accuracy 100%
Precision 100%
F1 - score 100%

n_neighbor 5
Anomaly 8
Threshold 1.096

Threshold percentile 95%

To further evaluate the effectiveness of the proposed IDS model in the SDN by
injecting DDoS attacks into the network. We utilized the Ubuntu environment
terminal and ran a set of multiple commands to launch DDoS attacks on the
selected nodes of the designed SDN. We evaluated how the launched packets
impacted the traffic data communication as well as how the KNN model
technique identified the DDoS attacks based on the threshold percentile. We
launched different sizes of packets to the various destination IP address nodes.
That is 64 bytes of DDoS packet attacks were directed to the destination IP
addresses that include: 10.0.0.2, 10.0.04, 10.0.0.3, 10.0.0.5, and 10.0.0.14. Table 12
presents the set of injected DDoS traffic commands in the SDN environment.

Table 12. Summarized DDoS Anomaly Attack details

The proposed IDS model was effective against all forms of network anomalies.
We evaluated mitigation policies based on the predefined policy to accurately
identify DDoS packet attacks in the SDN subdomain network. The proposed
policy in Table 4 is on the identified DDoS anomaly packet attack. The model
performed the mitigation action and monitored the state of our SDN environment
in the real-time simulation. The enforced policy was used to take actions against
alerted DDoS attacks in the network in terms of the number of data packets
suspended, excluded, pushed, and dropped during the failure because of the
DDoS attack in the SDN environment. We also evaluated how many flow rules
were required to be migrated in the network based on the failed controller. Table
13 presents the results obtained after the mitigation action policy was invoked on
the injected flow data.

DDoS attack Description

ping -c 5 -s 64 10.0.0.2 Send the 5 packets of 64 bytes to the host IP address 10.0.0.2
ping -c 6 -s 64 10.0.0.4 Send the 6 packets of 64 bytes to the DST IP address 10.0.0.4
ping -c 4 -s 64 10.0.0.3 Send the 4 packets of 64 bytes to the host IP address 10.0.0.3
ping -c 2 -s 64 10.0.0.5 Send the 2 packets of 64 bytes to the host IP address 10.0.0.5
ping -c 2 -s 64 10.0.0.14 Send the 2 packets of 64 bytes to the DST IP address

10.0.0.14

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 485

Table 13. Enforced policy results.

Figure 5. Anomaly detection

Furthermore, the effectiveness of the KNN-based IDS model was compared with
two other ML techniques such as naïve Bayes (NB) and random forest (RF). The
essence was to evaluate its detection accuracy and the pattern of the traffic
monitoring and classification on the assumed SDN data packets. As shown in
Figure5, the results show that the KNN algorithm outperformed NB and RF in
all three criteria, achieving perfect detection accuracy for DDoS attacks, precision,
and F1-score with 100% respectively. NB, on the other hand, performs reasonably
well but has slightly lower accuracy, 84%, and precision 79%. Moreover, RF also
performs well, especially in terms of precision, with 80% and F1-score with 82%.
Other factors such as computational efficiency and scalability are critical and will
be considered to further identify the most suitable algorithm. However, in terms
of the number of DDoS anomaly attacks detected, both NB and RF detected 12
attacks while KNN detected only 8 attacks. Thus, although KNN is the best in
terms of detection accuracy, precision, and F1 score, both NB and RF are more
effective in identifying DDoS attacks.

12

84% 78% 80%

12

79% 80% 82%

8

100% 100% 100%

0

2

4

6

8

10

12

14

DDoS anomaly attack Detection accuracy Precision F1 - score

NB RF KNN

Criteria Results

DropEntryFlow attack 5
ExcludeFlow attack 2

DropFlow attack 2
PushControllerFlow 3

No.of controllers 3

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

486 | An Integrated Framework for Controllers Placement and Security in Software

4.3 Discussion

This paper introduces a unified framework for CPP and security within the SDN
ecosystem. By integrating CPP with IDS, we optimize network security, enhance
threat detection, and improve network performance. Our approach employs ML
approaches: a clustering-based CPP and a KNN-based IDS to strategically place
controllers, facilitating real-time traffic analysis and more effective anomaly
detection. This integration reduces latency in controller-device communication,
enabling quicker detection and response to security incidents, thereby minimizing
their impact on network performance and user experience. Cost efficiency is also
achieved by optimizing resource use and reducing operational expenses related to
controller and switch deployment, as well as IDS management. Strategic controller
placement, informed by traffic analysis, reduces the number of necessary
controllers while extending coverage and detection capabilities. Load balancing is
attained by evenly distributing network traffic across controllers, considering
traffic volume, processing capacity, and utilization, which enhances computing
resource efficiency and network responsiveness. The model also improves fault
tolerance and resilience by distributing control functions across multiple
controllers, ensuring service continuity in the event of controller failure.
Furthermore, the integration facilitates centralized security management, enabling
consistent security policy enforcement and more effective threat detection and
response, thus improving visibility, control, and coordination of security
operations. Improved scalability, although not explicitly addressed, is an additional
benefit of this integrated approach.

To assess the proposed framework’s efficacy and performance, simulation
experiments were conducted, and the results were analyzed. These results affirmed
the framework’s capability to augment detection accuracy, reducing latency and
costs, as well as load balancing and reliability. A comparative analysis with existing
literature, detailed in Table 14, focused on controller placement’s impact on SDN
performance, controller deployment, and anomaly attack detection. The analysis
highlighted that current CPP implementations lack security integration. Unlike
disjointed IDS and CPP strategies found in these studies, this paper uniquely
combines both to offer a comprehensive solution in the SDN environment.

Table 14. Comparison with Related Works

Author
Method &
Algorithm

Evaluation Challenges

R Anusuya et al.
[82]

KNN, SVM, DT, and
RF

SDN environment
Network scalability &
mitigation of DDoS
attack

Sultan Zavrak et
al. [83]

SAnDet -SDN
anomaly detector,

SAnDet, an Area
Under the ROC
curve

Anomaly-based
intrusion detection

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 487

5. CONCLUSION

In this paper, we have designed an integrated framework for CPP and IDS in the
SDN environment to provide a comprehensive solution to SDN security and
performance. The integrated framework utilized clustering and classification
techniques to achieve controller placement and to detect the anomaly respectively
in the network. This integration is crucial for reducing costs and latency, while
maximizing security, load balancing, and fault tolerance. The effectiveness and
performance were evaluated based on simulation experiments. The results
obtained demonstrated that the integration of ML-based strategies can provide
comprehensive solutions in terms of security and performance in the SDN
environment. The IDS model was further compared with other ML techniques
such as NB and RF where KNN excels in all criteria. Moreover, this work was
also compared with CPP solutions in the literature. Based on the findings, show
that by strategically deploying controllers closer to critical network slices and
integrating them with IDS, organizations can improve threat detection capabilities,
improve incident response times, and strengthen overall network security posture
in dynamic and evolving environments. Our future work will focus on
incorporating additional ML techniques, such as DL and ensemble methods, and
improving feature engineering to further improve the model’s detection accuracy.

Author
Method &
Algorithm

Evaluation Challenges

neural networks
(RNN), EncDecAD

Avtar S et al. [84]
Hybrid ML model in
the SDN network

SDN environment
CPP objective &
DDoS detection and
mitigation

Najmun Nisa et
al. [85]

Packet filtration and
ML classification
techniques, SVM and
KNN

SDN network
CPP and DDoS
detection

Jiang Liu et al.
[86]

Clustering algorithms
SDN optimal and
sub-optimal
solution

Multiple objectives
optimization

Guodong Wang
et al. [87]

Optimized k means

SDN load
balancing,
resistance/reliability
awareness

Decrease the
complexity of the
controller placement

Lei et al. [88] Heuristic algorithm
SDN topology,
Propagation,
transmission delay

Control plane
minimization

This study
SDN-based enhanced
DBSCAN & KNN
IDS technique

SDN topology
based open
daylight, Ryu,
Floodlight’s
optimal controller

SDN processing
latency, reliability, load
balancing, optimal
controller, controller to
switch assignment

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

488 | An Integrated Framework for Controllers Placement and Security in Software

REFERENCES

[1] N. Makondo, H. I. Kobo, and T. E. Mathonsi, "The latest developments in

Software Defined Networking: Adoption rate and challenges," in 2023
IEEE AFRICON, 2023, pp. 1-6: IEEE.

[2] F. Liu, G. Kibalya, S. Santhosh Kumar, and P. Zhang, "Challenges of
traditional networks and development of programmable networks," in
Software defined Internet of everything: Springer, 2021, pp. 37-61.

[3] A. Shaghaghi, M. A. Kaafar, R. Buyya, S. J. H. o. C. N. Jha, C. S. Principles,
and Paradigms, "Software-defined network (SDN) data plane security:
issues, solutions, and future directions," pp. 341-387, 2020.

[4] A. Yazdinejadna, R. M. Parizi, A. Dehghantanha, and M. S. J. C. N. Khan,
"A kangaroo-based intrusion detection system on software-defined
networks," vol. 184, p. 107688, 2021.

[5] S. Haider et al., "A deep CNN ensemble framework for efficient DDoS
attack detection in software defined networks," vol. 8, pp. 53972-53983,
2020.

[6] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. J. I. I. o. T. J.
Bangash, "An in-depth analysis of IoT security requirements, challenges,
and their countermeasures via software-defined security," vol. 7, no. 10, pp.
10250-10276, 2020.

[7] X. Hou et al., "Reliable computation offloading for edge-computing-
enabled software-defined IoV," vol. 7, no. 8, pp. 7097-7111, 2020.

[8] B. B. Gupta and A. Dahiya, Distributed Denial of Service (DDoS) Attacks:
Classification, Attacks, Challenges and Countermeasures. CRC Press, 2021.

[9] K. B. Virupakshar, M. Asundi, K. Channal, P. Shettar, S. Patil, and D. J. P.
C. S. Narayan, "Distributed denial of service (DDoS) attacks detection
system for OpenStack-based private cloud," vol. 167, pp. 2297-2307, 2020.

[10] M. H. Ali et al., "Threat analysis and distributed denial of service (DDoS)
attack recognition in the Internet of things (IoT)," vol. 11, no. 3, p. 494,
2022.

[11] P. Krishnan, K. Jain, A. Aldweesh, P. Prabu, and R. J. J. o. C. C. Buyya,
"OpenStackDP: a scalable network security framework for SDN-based
OpenStack cloud infrastructure," vol. 12, no. 1, p. 26, 2023.

[12] M. Rahouti, K. Xiong, Y. Xin, S. K. Jagatheesaperumal, M. Ayyash, and M.
J. I. A. Shaheed, "SDN security review: Threat taxonomy, implications, and
open challenges," vol. 10, pp. 45820-45854, 2022.

[13] A. Singh, G. S. Aujla, R. S. J. S. C. I. Bali, and Systems, "Container-based
load balancing for energy efficiency in software-defined edge computing
environment," vol. 30, p. 100463, 2021.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 489

[14] M.-L. Chiang, H.-S. Cheng, H.-Y. Liu, and C.-Y. J. C. C. Chiang, "SDN-
based server clusters with dynamic load balancing and performance
improvement," vol. 24, pp. 537-558, 2021.

[15] K. A. Jadhav, M. M. Mulla, and D. Narayan, "An efficient load balancing
mechanism in software defined networks," in 2020 12th international conference
on computational intelligence and communication networks (CICN), 2020, pp. 116-
122: IEEE.

[16] M. R. Belgaum, S. Musa, M. M. Alam, and M. M. J. I. A. Su’ud, "A
systematic review of load balancing techniques in software-defined
networking," vol. 8, pp. 98612-98636, 2020.

[17] A. Ahmad, E. Harjula, M. Ylianttila, and I. Ahmad, "Evaluation of machine
learning techniques for security in SDN," in 2020 IEEE Globecom Workshops
(GC Wkshps, 2020, pp. 1-6: IEEE.

[18] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and J. M. J. I.
A. Arco, "A survey on machine learning techniques for routing
optimization in SDN," vol. 9, pp. 104582-104611, 2021.

[19] Y. Hande and A. Muddana, "A survey on intrusion detection system for
software defined networks (SDN)," in Research Anthology on Artificial
Intelligence Applications in Security: IGI Global, 2021, pp. 467-489.

[20] K. M. Sudar and P. J. I. J. o. I. E. Deepalakshmi, "Comparative study on
IDS using machine learning approaches for software defined networks,"
vol. 7, no. 1-3, pp. 15-27, 2020.

[21] T. Jafarian, M. Masdari, A. Ghaffari, and K. J. I. J. o. C. S. Majidzadeh,

"Security anomaly detection in software‐defined networking based on a
prediction technique," vol. 33, no. 14, p. e4524, 2020.

[22] Y. Maleh, Y. Qasmaoui, K. El Gholami, Y. Sadqi, and S. J. J. o. R. I. E.
Mounir, "A comprehensive survey on SDN security: threats, mitigations,
and future directions," vol. 9, no. 2, pp. 201-239, 2023.

[23] K. Muthamil Sudar, P. J. J. o. I. Deepalakshmi, and F. Systems, "An
intelligent flow-based and signature-based IDS for SDNs using ensemble
feature selection and a multi-layer machine learning-based classifier," vol.
40, no. 3, pp. 4237-4256, 2021.

[24] N. Mazhar, R. Salleh, M. A. Hossain, M. J. I. J. o. A. C. S. Zeeshan, and
Applications, "SDN based intrusion detection and prevention systems
using manufacturer usage description: A survey," vol. 11, no. 12, 2020.

[25] S. Ahmad, A. H. J. J. o. N. Mir, and S. Management, "Scalability,
consistency, reliability and security in SDN controllers: a survey of diverse
SDN controllers," vol. 29, pp. 1-59, 2021.

[26] M. Ali et al., "Performance and Scalability Analysis of SDN-Based Large-
Scale Wi-Fi Networks," vol. 13, no. 7, p. 4170, 2023.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

490 | An Integrated Framework for Controllers Placement and Security in Software

[27] B. Sapkota, B. R. Dawadi, and S. R. J. E. R. Joshi, "Controller placement
problem during SDN deployment in the ISP/Telco networks: A survey,"
vol. 6, no. 2, p. e12801, 2024.

[28] J. P. Martin, "Orchestration Mechanisms for Enabling Distributed
Processing In the Fog Computing Environment," National Institute of
Technology Karnataka, Surathkal, 2021.

[29] A. J. W. P. C. Javadpour, "Providing a way to create balance between
reliability and delays in SDN networks by using the appropriate placement
of controllers," vol. 110, pp. 1057-1071, 2020.

[30] F. Chahlaoui and H. J. S. C. S. Dahmouni, "A taxonomy of load balancing
mechanisms in centralized and distributed SDN architectures," vol. 1, no.
5, p. 268, 2020.

[31] M. R. Belgaum, Z. Alansari, S. Musa, M. M. Alam, M. J. I. J. o. E. Mazliham,
and C. Engineering, "Role of artificial intelligence in cloud computing, IoT
and SDN: Reliability and scalability issues," vol. 11, no. 5, p. 4458, 2021.

[32] L. Zhu et al., "SDN controllers: A comprehensive analysis and performance
evaluation study," vol. 53, no. 6, pp. 1-40, 2020.

[33] D. Cabarkapa and D. Rancic, "Software-Defined Networking: The Impact
of Scalability on Controller Performance," in 2022 IEEE Zooming Innovation
in Consumer Technologies Conference (ZINC), 2022, pp. 17-21: IEEE.

[34] A. Naseri, M. Ahmadi, and L. J. C. C. PourKarimi, "Placement of SDN
controllers based on network setup cost and latency of control packets,"
2023.

[35] M. T. Islam, N. Islam, and M. A. J. W. P. C. Refat, "Node to node
performance evaluation through RYU SDN controller," vol. 112, pp. 555-
570, 2020.

[36] V. H. Kelian et al., "Toward Adaptive and Scalable Topology in Distributed
SDN Controller," vol. 30, no. 1, pp. 115-131, 2023.

[37] P. Sun, Z. Guo, J. Li, Y. Xu, J. Lan, and Y. J. I. A. T. o. N. Hu, "Enabling
scalable routing in software-defined networks with deep reinforcement
learning on critical nodes," vol. 30, no. 2, pp. 629-640, 2021.

[38] Z. Ye, G. Sun, and M. J. I. I. o. T. J. Guizani, "ILBPS: An Integrated
Optimization Approach Based on Adaptive Load-Balancing and Heuristic
Path Selection in SDN," 2023.

[39] J. C. C. Chica, J. C. Imbachi, J. F. B. J. J. o. N. Vega, and C. Applications,
"Security in SDN: A comprehensive survey," vol. 159, p. 102595, 2020.

[40] W. Jiang, H. Han, M. He, and W. J. E. S. w. A. Gu, "ML-based pre-
deployment SDN performance prediction with neural network boosting
regression," vol. 241, p. 122774, 2024.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 491

[41] G. D. Singh et al., "A novel framework for capacitated SDN controller
placement: Balancing latency and reliability with PSO algorithm," vol. 87,
pp. 77-92, 2024.

[42] A. K. Singh, S. Srivastava, S. J. J. o. A. I. Banerjea, and H. Computing,
"Evaluating heuristic techniques as a solution of controller placement
problem in SDN," vol. 14, no. 9, pp. 11729-11746, 2023.

[43] G. Ramya and R. J. T. J. o. S. Manoharan, "Traffic-aware dynamic controller
placement in SDN using NFV," vol. 79, no. 2, pp. 2082-2107, 2023.

[44] O. Benoudifa, A. A. Wakrime, R. J. J. o. K. S. U.-C. Benaini, and I. Sciences,
"Autonomous solution for Controller Placement Problem of Software-
Defined Networking using MuZero based intelligent agents," vol. 35, no.
10, p. 101842, 2023.

[45] S. Almakdi, A. Aqdus, R. Amin, and M. S. J. I. A. Alshehri, "An Intelligent
Load Balancing Technique for Software Defined Networking based 5G
using Macine Learning models," 2023.

[46] J. Jacob, S. Shinde, D. J. J. o. T. Narayan, and I. Technology, "An Efficient
Controller Placement Algorithm using Clustering in Software Defined
Networks," no. 4, pp. 9-17, 2023.

[47] D. He, J. Chen, and X. J. T. J. o. S. Qiu, "A density algorithm for controller
placement problem in software defined wide area networks," vol. 79, no. 5,
pp. 5374-5402, 2023.

[48] A. A. Ibrahim et al., "Reliability-aware swarm based multi-objective
optimization for controller placement in distributed SDN architecture,"
2023.

[49] H. Xu, X. Chai, and H. J. S. Liu, "A Multi-Controller Placement Strategy
for Hierarchical Management of Software-Defined Networking," vol. 15,
no. 8, p. 1520, 2023.

[50] E. Calle, D. Martínez, M. Mycek, and M. J. I. J. o. C. I. P. Pióro, "Resilient
backup controller placement in distributed SDN under critical targeted
attacks," vol. 33, p. 100422, 2021.

[51] G. Hessam, G. Saba, and M. I. J. J. o. C. S. Alkhayat, "A new approach for
detecting violation of data plane integrity in Software Defined Networks,"
vol. 29, no. 3, pp. 341-358, 2021.

[52] S. Yang, L. Cui, Z. Chen, W. J. I. T. o. N. Xiao, and S. Management, "An
efficient approach to robust SDN controller placement for security," vol.
17, no. 3, pp. 1669-1682, 2020.

[53] M. S. Tok, M. J. C. Demirci, and Security, "Security analysis of SDN
controller-based DHCP services and attack mitigation with DHCPguard,"
vol. 109, p. 102394, 2021.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

492 | An Integrated Framework for Controllers Placement and Security in Software

[54] T. Hasan, A. Akhunzada, T. Giannetsos, and J. Malik, "Orchestrating sdn
control plane towards enhanced IoT security," in 2020 6th IEEE Conference
on Network Softwarization (NetSoft), 2020, pp. 457-464: IEEE.

[55] I. Ahammad, M. A. R. Khan, Z. U. J. S. M. P. Salehin, and Theory, "QoS
performance enhancement policy through combining fog and SDN," vol.
109, p. 102292, 2021.

[56] S. Goudarzi, M. H. Anisi, H. Ahmadi, and L. J. I. I. o. T. J. Musavian,
"Dynamic resource allocation model for distribution operations using
SDN," vol. 8, no. 2, pp. 976-988, 2020.

[57] Y. Otoum, A. J. J. o. N. Nayak, and S. Management, "As-ids: Anomaly and
signature based ids for the internet of things," vol. 29, pp. 1-26, 2021.

[58] I. P. Saputra, E. Utami, and A. H. Muhammad, "Comparison of anomaly
based and signature based methods in detection of scanning vulnerability,"
in 2022 9th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), 2022, pp. 221-225: IEEE.

[59] S. Einy, C. Oz, and Y. D. J. M. P. i. E. Navaei, "The anomaly-and signature-
based IDS for network security using hybrid inference systems," vol. 2021,
pp. 1-10, 2021.

[60] N. Sahani, R. Zhu, J.-H. Cho, and C.-C. J. A. T. o. C.-P. S. Liu, "Machine
Learning-based Intrusion Detection for Smart Grid Computing: A Survey,"
vol. 7, no. 2, pp. 1-31, 2023.

[61] L. Le Jeune, T. Goedeme, and N. J. I. A. Mentens, "Machine learning for
misuse-based network intrusion detection: overview, unified evaluation and
feature choice comparison framework," vol. 9, pp. 63995-64015, 2021.

[62] M. Labonne, "Anomaly-based network intrusion detection using machine
learning," Institut Polytechnique de Paris, 2020.

[63] U. A. Usmani, A. Happonen, and J. Watada, "A Review of Unsupervised
Machine Learning Frameworks for Anomaly Detection in Industrial
Applications," in Science and Information Conference, 2022, pp. 158-189:
Springer.

[64] T.-H. Nguyen, T. T. T. Van Son Nguyen, T. T. Dung, N. L. Le Thi Thanh
Thuy, N. M. Dung, and N. J. J. o. S. J. U. Van Ba, "Using Machine Learning
And Deep Learning To Improve Anomaly Attack," vol. 58, no. 4, 2023.

[65] P. R. B. N. Tomás, "Using Machine Learning (Ml) For Anomaly Detection
Over Traffic Present In Service Mesh Arquitectures," 2022.

[66] I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, and J. J. F. G. C.
S. Gama, "Host-based IDS: A review and open issues of an anomaly
detection system in IoT," vol. 133, pp. 95-113, 2022.

[67] R. Chaganti, W. Suliman, V. Ravi, and A. J. I. Dua, "Deep learning approach
for SDN-enabled intrusion detection system in IoT networks," vol. 14, no.
1, p. 41, 2023.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Rodney Sebopelo1, Bassey Isong | 493

[68] G. Logeswari, S. Bose, T. J. I. A. Anitha, and S. Computing, "An intrusion
detection system for sdn using machine learning," vol. 35, no. 1, pp. 867-
880, 2023.

[69] A. O. Alzahrani, M. J. J. C. Alenazi, C. Practice, and Experience, "ML‐

IDSDN: Machine learning based intrusion detection system for software‐
defined network," vol. 35, no. 1, p. e7438, 2023.

[70] N. S. Shaji, R. Muthalagu, P. M. J. M. T. Pawar, and Applications, "SD-
IIDS: intelligent intrusion detection system for software-defined networks,"
pp. 1-33, 2023.

[71] M. Sneha, A. K. Kumar, N. V. Hegde, A. Anish, and G. J. I. J. o. I. S.
Shobha, "RADS: a real-time anomaly detection model for software-defined
networks using machine learning," vol. 22, no. 6, pp. 1881-1891, 2023.

[72] D. A. Ezeh and J. J. I. J. A. P. O. T. S. A. F. I. de Oliveira, "An SDN
controller-based framework for anomaly detection using a GAN ensemble
algorithm," vol. 15, no. 2, pp. 29-36, 2023.

[73] Y. Al-Dunainawi, B. R. Al-Kaseem, and H. S. J. I. A. Al-Raweshidy,
"Optimized Artificial Intelligence Model for DDoS Detection in SDN
Environment," 2023.

[74] M. Hammad, N. Hewahi, W. J. A. J. o. B. Elmedany, and A. Sciences,
"Enhancing Network Intrusion Recovery in SDN with machine learning:
an innovative approach," vol. 30, no. 1, pp. 561-572, 2023.

[75] S. Lal and V. Singh, "Techniques to Enhance the Performance of DBSCAN
Clustering Algorithm in Data Mining."

[76] H. Zhang, "Wireless Network Analysis and Optimization Based on the
Social Media Data."

[77] A. E. Ezugwu et al., "A comprehensive survey of clustering algorithms:
State-of-the-art machine learning applications, taxonomy, challenges, and
future research prospects," vol. 110, p. 104743, 2022.

[78] S. Ray, "A quick review of machine learning algorithms," in 2019
International conference on machine learning, big data, cloud and parallel
computing (COMITCon), 2019, pp. 35-39: IEEE.

[79] M. Bansal, A. Goyal, and A. J. D. A. J. Choudhary, "A comparative analysis
of K-nearest neighbor, genetic, support vector machine, decision tree, and
long short term memory algorithms in machine learning," vol. 3, p. 100071,
2022.

[80] J. Yang, X. Tan, and S. J. P. R. L. Rahardja, "Outlier detection: How to
Select k for k-nearest-neighbors-based outlier detectors," vol. 174, pp. 112-
117, 2023.

[81] R. Santos et al., "Machine learning algorithms to detect DDoS attacks in
SDN," vol. 32, no. 16, p. e5402, 2020.

Journal of Information Systems and Informatics
Vol. 6, No. 1, March 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

494 | An Integrated Framework for Controllers Placement and Security in Software

[82] R. Anusuya, M. R. Prabhu, C. Prathima, and J. A. J. J. o. S. i. F. S. Kumar,
"Detection of TCP, UDP and ICMP DDOS attacks in SDN Using Machine
Learning approach," vol. 10, no. 4S, pp. 964-971, 2023.

[83] S. Zavrak, M. J. N. C. Iskefiyeli, and Applications, "Flow-based intrusion
detection on software-defined networks: a multivariate time series anomaly
detection approach," vol. 35, no. 16, pp. 12175-12193, 2023.

[84] A. Singh, H. Kaur, and N. J. C. C. Kaur, "A novel DDoS detection and
mitigation technique using hybrid machine learning model and redirect
illegitimate traffic in SDN network," pp. 1-21, 2023.

[85] N. Nisa, A. S. Khan, Z. Ahmad, and J. J. I. J. o. N. M. Abdullah, "TPAAD:

Two‐phase authentication system for denial of service attack detection and

mitigation using machine learning in software‐defined network," p. e2258,
2024.

[86] J. Liu, J. Liu, R. J. C. S. Xie, and I. Systems, "Reliability-based controller
placement algorithm in software defined networking," vol. 13, no. 2, pp.
547-560, 2016.

[87] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, "A K-means-based
network partition algorithm for controller placement in software defined
network," in 2016 IEEE International Conference on Communications (ICC),
2016, pp. 1-6: IEEE.

[88] L. Zhu, R. Chai, and Q. Chen, "Control plane delay minimization based
SDN controller placement scheme," in 2017 9th International Conference on
Wireless Communications and Signal Processing (WCSP), 2017, pp. 1-6: IEEE.

