Current Directions and Future Research Priorities of Customer Data Analysis

  • Mohammed M Mohammed Al-Neelain University
  • Nagi A. Mohamed Omdurman Islamic University
  • Ali A. Adam Al-Neelain University
  • Shazali S. Ahmed
  • Fakhreldeen A. Saeed Al-Neelain University https://orcid.org/0000-0002-0024-983X
Keywords: Customer analysis, customer purchase, customer satisfaction, data analysis

Abstract

Customer analysis is receiving special attention from both researchers and professionals. The objective of this paper is to identify the trends of techniques used to address customer’s current problems and shed light on future research directions using a literature review. We reviewed the literature for the last five years. The findings revealed that customer purchase was the most popular technique used by the research community followed by customer satisfaction and visit wit. Whereas customer segmentation and customer churn were the least. However, the regression method was commonly used for predicting customer purchase and behavior. But, social media and big data are still in their early stages for customer analytics research.

Downloads

Download data is not yet available.

References

[1] A. Martínez, C. Schmuck, S. Pereverzyev, C. Pirker, and M. Haltmeier, “A machine learning framework for customer purchase prediction in the non-contractual setting,” Eur. J. Oper. Res., 2018, doi: 10.1016/j.ejor.2018.04.034.
[2] J. K. Von Bischhoffshausen, M. Paatsch, M. Reuter, G. Satzger, and H. Fromm, “An Information System for Sales Team Assignments Utilizing Predictive and Prescriptive Analytics,” Proc. - 17th IEEE Conf. Bus. Informatics, CBI 2015, vol. 1, pp. 68–76, 2015, doi: 10.1109/CBI.2015.38.
[3] E. Yarimoglu and T. Gunay, “The extended theory of planned behavior in Turkish customers’ intentions to visit green hotels,” Bus. Strateg. Environ., vol. 29, no. 3, pp. 1097–1108, 2020, doi: 10.1002/bse.2419.
[4] M. T. Ballestar, P. Grau-Carles, and J. Sainz, “Customer segmentation in e-commerce: Applications to the cashback business model,” J. Bus. Res., vol. 88, no. June, pp. 407–414, 2018, doi: 10.1016/j.jbusres.2017.11.047.
[5] S. Yuan, S. Bai, M. Song, and Z. Zhou, “Customer Churn Prediction in the Online New Media Platform: A Case Study on Juzi Entertainment,” 2017 Int. Conf. Platf. Technol. Serv. PlatCon 2017 - Proc., pp. 0–4, 2017, doi: 10.1109/PlatCon.2017.7883698.
[6] S. Meinzer, U. Jensen, A. Thamm, J. Hornegger, and B. M. Eskofier, “Can machine learning techniques predict customer dissatisfaction? A feasibility study for the automotive industry,” Artif. Intell. Res., vol. 6, no. 1, p. 80, 2016, doi: 10.5430/air.v6n1p80.
[7] J. Guo, X. Wang, and Y. Wu, “Positive emotion bias: Role of emotional content from online customer reviews in purchase decisions,” J. Retail. Consum. Serv., vol. 52, no. October 2018, 2020, doi: 10.1016/j.jretconser.2019.101891.
[8] S. Peker, A. Kocyigit, and P. E. Eren, “A hybrid approach for predicting customers’ individual purchase behavior,” Kybernetes, vol. 46, no. 10, pp. 1614–1631, 2017, doi: 10.1108/K-05-2017-0164.
[9] J. Yeo, S. W. Hwang, S. Kim, E. Koh, and N. Lipka, “Conversion Prediction from Clickstream: Modeling Market Prediction and Customer Predictability,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 2, pp. 246–259, 2020, doi: 10.1109/TKDE.2018.2884467.
[10] M. Alnsour and H. R. Al Faour, “The influence of customers social media brand community engagement on restaurants visit intentions,” Int. J. Cust. Relatsh. Mark. Manag., vol. 10, no. 4, pp. 1–14, 2019, doi: 10.4018/IJCRMM.2019100101.
[11] A. K. Bhowmick and B. Mitra, “Listen to me, my neighbors or my friend? Role of complementary modalities for predicting business popularity in location based social networks,” Comput. Commun., vol. 135, no. June 2018, pp. 53–70, 2019, doi: 10.1016/j.comcom.2019.01.004.
[12] A. Ghahtarani, M. Sheikhmohammady, and M. Rostami, “The impact of social capital and social interaction on customers’ purchase intention, considering knowledge sharing in social commerce context,” J. Innov. Knowl., vol. 5, no. 3, pp. 191–199, 2020, doi: 10.1016/j.jik.2019.08.004.
[13] L. Tang, A. Wang, Z. Xu, and J. Li, “Online-purchasing behavior forecasting with a firefly algorithm-based SVM model considering shopping cart use,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 12, pp. 7967–7983, 2017, doi: 10.12973/ejmste/77906.
[14] B. J. D. Jacobs, B. Donkers, and D. Fok, “Model-based purchase predictions for large assortments,” Mark. Sci., vol. 35, no. 3, pp. 389–404, 2016, doi: 10.1287/mksc.2016.0985.
[15] S. Mau, I. Pletikosa, and J. Wagner, “Forecasting the next likely purchase events of insurance customers: A case study on the value of data-rich multichannel environments,” Int. J. Bank Mark., vol. 36, no. 6, pp. 1125–1144, 2018, doi: 10.1108/IJBM-11-2016-0180.
[16] J. Feigl and M. Bogdan, “Neural networks for personalized item rankings,” Neurocomputing, vol. 342, pp. 60–65, 2019, doi: 10.1016/j.neucom.2018.10.083.
[17] P. Anitha and M. M. Patil, “RFM model for customer purchase behavior using K-Means algorithm,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020, doi: 10.1016/j.jksuci.2019.12.011.
[18] S. Peker, A. Kocyigit, and P. E. Eren, “LRFMP model for customer segmentation in the grocery retail industry: a case study,” Mark. Intell. Plan., vol. 35, no. 4, pp. 544–559, 2017, doi: 10.1108/MIP-11-2016-0210.
[19] Q. Hu, S. Xie, J. Zhang, Q. Zhu, S. Guo, and P. S. Yu, “Hetero sales: Utilizing heterogeneous social networks to identify the next enterprise customer,” 25th Int. World Wide Web Conf. WWW 2016, pp. 41–50, 2016, doi: 10.1145/2872427.2883000.
[20] G. Blessing and M. Natter, “Do Mystery Shoppers Really Predict Customer Satisfaction and Sales Performance?,” J. Retail., pp. 1–16, 2019, doi: 10.1016/j.jretai.2019.04.001.
[21] A. De Caigny, K. Coussement, and K. W. De Bock, “A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees,” Eur. J. Oper. Res., vol. 269, no. 2, pp. 760–772, 2018, doi: 10.1016/j.ejor.2018.02.009.
[22] A. Alamsyah and F. Saviera, “A Comparison of Indonesia’s E-Commerce Sentiment Analysis for Marketing Intelligence Effort (case study of Bukalapak, Tokopedia and Elevenia),” 8 th Int. Conf. Sustain. Collab. Bus. , Technol. Inf. Innov., 2017.
[23] S. Kim and J. G. Lee, “A systematic framework of predicting customer revisit with in-store sensors,” Knowl. Inf. Syst., 2019, doi: 10.1007/s10115-019-01373-y.
[24] T. Van Nguyen, L. Zhou, A. Y. L. Chong, B. Li, and X. Pu, “Predicting customer demand for remanufactured products: A data-mining approach,” Eur. J. Oper. Res., 2019, doi: 10.1016/j.ejor.2019.08.015.
[25] X. Chen, Y. Fang, M. Yang, F. Nie, Z. Zhao, and J. Z. Huang, “PurTreeClust: A clustering algorithm for customer segmentation from massive customer transaction data,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 559–572, 2018, doi: 10.1109/TKDE.2017.2763620.
[26] K. Dahiya and S. Bhatia, “Customer churn analysis in telecom industry,” 2015 4th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2015, pp. 1–6, 2015, doi: 10.1109/ICRITO.2015.7359318.
[27] Hendra, E. S. Rini, P. Ginting, and B. K. F. Sembiring, “Impact of eCommerce service quality, recovery service quality, and satisfaction in Indonesia,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018–Janua, pp. 35–40, 2018, doi: 10.1109/SIET.2017.8304105.
[28] Y. (Nancy) Dai, G. Viken, E. Joo, and G. Bente, “Risk assessment in e-commerce: How sellers’ photos, reputation scores, and the stake of a transaction influence buyers’ purchase behavior and information processing,” Comput. Human Behav., vol. 84, pp. 342–351, 2018, doi: 10.1016/j.chb.2018.02.038.
[29] S. Ding, Z. Wang, D. Wu, and D. L. Olson, “Utilizing customer satisfaction in ranking prediction for personalized cloud service selection,” Decis. Support Syst., vol. 93, pp. 1–10, 2017, doi: 10.1016/j.dss.2016.09.001.
[30] R. Shi, H. Chen, and S. P. Sethi, “A generalized count model on customers’ purchases in O2O market,” Int. J. Prod. Econ., vol. 215, pp. 121–130, 2019, doi: 10.1016/j.ijpe.2017.11.009.
[31] J. Herzig, G. Feigenblat, M. Shmueli-Scheuer, D. Konopnicki, and A. Rafaeli, “Predicting customer satisfaction in customer support conversations in social media using affective features,” UMAP 2016 - Proc. 2016 Conf. User Model. Adapt. Pers., pp. 115–119, 2016, doi: 10.1145/2930238.2930285.
[32] A. Griva, K. Pramatari, and C. Bardaki, “Customer Visit Segmentation Using Market Basket Data Using Market Basket Data,” Proc. 2016 Pre-ICIS SIGDSA/IFIP WG8.3 Symp. Innov. Data Anal. Spec., pp. 6–9, 2016.
[33] L. Wu et al., “Product Adoption Rate Prediction in a Competitive Market,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 2, pp. 325–338, 2018, doi: 10.1109/TKDE.2017.2763944.
[34] C. Lee, X. Xu, and C. C. Lin, “Using online user-generated reviews to predict offline box-office sales and online DVD store sales in the O2O era,” J. Theor. Appl. Electron. Commer. Res., vol. 14, no. 1, pp. 68–83, 2019, doi: 10.4067/S0718-18762019000100106.
[35] Y. T. Wen, P. W. Yeh, T. H. Tsai, W. C. Peng, and H. H. Shuai, “Customer purchase behavior prediction from payment datasets,” WSDM 2018 - Proc. 11th ACM Int. Conf. Web Search Data Min., vol. 2018–Febua, pp. 628–636, 2018, doi: 10.1145/3159652.3159707.
[36] Y. Zuo, “Prediction of consumer purchase behaviour using Bayesian network: an operational improvement and new results based on RFID data,” Int. J. Knowl. Eng. Soft Data Paradig., vol. 5, no. 2, p. 85, 2016, doi: 10.1504/ijkesdp.2016.075976.
[37] S. P. Jeng, “Increasing customer purchase intention through product return policies: The pivotal impacts of retailer brand familiarity and product categories,” J. Retail. Consum. Serv., vol. 39, no. January, pp. 182–189, 2017, doi: 10.1016/j.jretconser.2017.08.013.
[38] Y. Lou, W. Wang, and X. Yang, “Customers’ Attitude on New Energy Vehicles’ Policies and Policy Impact on Customers’ Purchase Intention,” Energy Procedia, vol. 105, pp. 2187–2193, 2017, doi: 10.1016/j.egypro.2017.03.617.
[39] S. Jang, P. J. Kitchen, and J. Kim, “The effects of gamified customer benefits and characteristics on behavioral engagement and purchase: Evidence from mobile exercise application uses,” J. Bus. Res., vol. 92, no. July, pp. 250–259, 2018, doi: 10.1016/j.jbusres.2018.07.056.
[40] Z. Yang, Y. Zheng, Y. Zhang, Y. Jiang, H. T. Chao, and S. C. Doong, “Bipolar influence of firm-generated content on customers’ offline purchasing behavior: A field experiment in China,” Electron. Commer. Res. Appl., vol. 35, no. February 2018, p. 100844, 2019, doi: 10.1016/j.elerap.2019.100844.
[41] A. Borah, S. Banerjee, Y. Lin, A. Jain, and A. B. Eisingerich, “Improvised Marketing Interventions in Social Media,” 2020, doi: 10.1177/0022242919899383.
[42] E. T. Javid, M. Nazari, and M. R. Ghaeli, “Social media and e-commerce: A scientometrics analysis,” Int. J. Data Netw. Sci., vol. 3, no. 3, pp. 269–290, 2019, doi: 10.5267/j.ijdns.2019.2.001.
[43] G. Appel, L. Grewal, R. Hadi, A. T. Stephen, A. T. Stephen, and G. Appel, “The future of social media in marketing,” J. Acad. Mark. Sci., 2019, doi: 10.1007/s11747-019-00695-1.
[44] H. Hallikainen, E. Savimäki, and T. Laukkanen, “Fostering B2B sales with customer big data analytics,” Ind. Mark. Manag., vol. 86, no. October 2019, pp. 90–98, 2020, doi: 10.1016/j.indmarman.2019.12.005.
[45] H. Zhang and Y. Xiao, “Customer involvement in big data analytics and its impact on B2B innovation,” Ind. Mark. Manag., vol. 86, no. July 2018, pp. 99–108, 2020, doi: 10.1016/j.indmarman.2019.02.020.
Published
2020-09-07
Abstract views: 164 times
Download PDF: 102 times
How to Cite
Mohammed, M., Mohamed, N., Adam, A., Ahmed, S., & Saeed, F. (2020). Current Directions and Future Research Priorities of Customer Data Analysis. Journal of Information Systems and Informatics, 2(2), 300-311. https://doi.org/10.33557/journalisi.v2i2.75