Classification of Fetal Heart Based on Images Augmentation Using Convolutional Neural Network Method

  • Muhammad Taufik Roseno Universitas Sriwijaya
  • Hadi Syaputra Universitas Bina Darma
Keywords: Convolutional Neural Networks, Deep Learning, Echocardiography, classification.

Abstract

Standard fetal heart echocardiography view consists of several specific views that can be prolific to optimize the visualization of various structures and anomalies including three vessel and trachea view, right ventricular outflow tract view, four chamber view, left ventricular outflow tract, and right ventricular outflow tract. With the use of current technological developments specifically deep learning, it can classify images from the visualization of the echocardiography point of view obtained. One of the deep learning models that has the best performance in image recognition and classification is the Convolutional Neural Network. Research consists of several stages, namely data collection, data pre-processing, data augmentation, data sharing designing the Convolutional Neural Network model architecture, training, testing, and results. 5 types of echocardiography videos were used based on the echocardiography point of view, resulting in 3,995 images consisting of 3,196 training data and 799 test data. The implementation of convolutional neural networks for the classification of fetal echocardiography images based on point of view obtained good results. The Convolutional Neural Network used consists of 2 convolution layers, 2 layers, 1 flatten layer, 2 dense layers, and 2 Dropout layers. The accuracy rate obtained from the CNN model with a learning rate value of 0.01 and the number of epochs of 50 gets an accuracy value of 98%.

Downloads

Download data is not yet available.

References

L. T. Coilal, L. Anggraeni, and I. Gustina, “Gambaran Tingkat Pengetahuan Ibu Hamil Tentang Manfaat Ultrasonografi (Usg) Dalam Pemeriksaan Kehamilan,” p. 4.

E. L. Utari, “ANALISA DETEKSI TEPI JANIN DENGAN MENGGUNAKAN METODE PREWITT DAN CANNY,” p. 10.

S. Imardi and K. Ramli, “Pengembangan Dan Pengkayaan Fungsi Antarmuka Perangkat Lunak Untuk Visualisasi Dan Analisis Citra Ultrasonografi,” p. 10.

P. Veronese, G. Bogana, A. Cerutti, L. Yeo, R. Romero, and M. T. Gervasi, “A Prospective Study of the Use of Fetal Intelligent Navigation Echocardiography (FINE) to Obtain Standard Fetal Echocardiography Views,” Fetal Diagn. Ther., vol. 41, no. 2, pp. 89–99, 2017, doi: 10.1159/000446982.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017, doi: 10.1109/TIP.2017.2662206.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw., vol. 61, pp. 85–117, Jan. 2015, doi: 10.1016/j.neunet.2014.09.003.

A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Inform. Comput., vol. 4, no. 1, pp. 45–51, May 2020, doi: 10.30871/jaic.v4i1.2017.

F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Inform. Comput. Sci. JINACS, vol. 1, no. 02, pp. 104–108, Jan. 2020, doi: 10.26740/jinacs.v1n02.p104-108.

I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN),” J. Gaussian, vol. 9, no. 3, pp. 273–282, Aug. 2020, doi: 10.14710/j.gauss.v9i3.27416.

N. Fadlia and R. Kosasih, “Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (CNN),” J. Ilm. Teknol. Dan Rekayasa, vol. 24, no. 3, pp. 207–215, 2019, doi: 10.35760/tr.2019.v24i3.2397.

B. Nugroho and E. Y. Puspaningrum, “Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input,” J. Teknol. Inf. Dan Ilmu Komput., vol. 8, no. 3, p. 533, Jun. 2021, doi: 10.25126/jtiik.2021834515.

Z. F. Abror, “Klasifikasi Citra Kebakaran Dan Non Kebakaran Menggunakan Convolutional Neural Network,” J. Ilm. Teknol. Dan Rekayasa, vol. 24, no. 2, pp. 102–113, 2019, doi: 10.35760/tr.2019.v24i2.2389.

K. H. Mahmud and S. A. Faraby, “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network,” p. 10.

Muzakir A, Ependi U. Model for Identification and Prediction of Leaf Patterns: Preliminary Study for Improvement. Scientific Journal of Informatics. 2021 Nov 30;8(2):244-50.

Published
2022-06-03
Abstract views: 78 times
Download PDF: 49 times
How to Cite
Roseno, M., & Syaputra, H. (2022). Classification of Fetal Heart Based on Images Augmentation Using Convolutional Neural Network Method. Journal of Information Systems and Informatics, 4(2), 252-265. https://doi.org/10.51519/journalisi.v4i2.247